书签 分享 收藏 举报 版权申诉 / 30
上传文档赚钱

类型HK沪科版 八年级数学 下册第二学期春 部优公开课堂教学课件 第十七章一元二次方程 1721 配方法.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4126794
  • 上传时间:2022-11-12
  • 格式:PPT
  • 页数:30
  • 大小:946.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《HK沪科版 八年级数学 下册第二学期春 部优公开课堂教学课件 第十七章一元二次方程 1721 配方法.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    HK沪科版 八年级数学 下册第二学期春 部优公开课堂教学课件 第十七章 一元二次方程 1721 配方法 HK 沪科版 下载 _八年级下册_沪科版(2024)_数学_初中
    资源描述:

    1、17.2 一元二次方程的解法第17章 一元二次方程导入新课讲授新课当堂练习课堂小结17.2.1 配方法 八年级数学下(HK)教学课件学习目标1.运用开平方法解形如x2=p或(x+n)2=p(p0)的方程.2.掌握用配方法解一元二次方程及解决有关问题.(重点)3.探索直接开平方法和配方法之间的区别和联系.(难点)1.如果 x2=a,则x叫做a的 .导入新课导入新课复习引入平方根2.如果 x2=a(a 0),则x=.3.如果 x2=64,则x=.a84.任何数都可以作为被开方数吗?负数不可以作为被开方数.讲授新课讲授新课直接开平方法一 问题:一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷

    2、完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2,可,可列出方程106x2=1500,由此可得 x2=25,开平方得即x1=5,x2=5.棱长不能是负值,正方体的棱长为5dmx=5,试一试:解下列方程,并说明你所用的方法,与同伴交流.(1)x2=4(2)x2=0(3)x2+1=0解:根据平方根的意义,得x1=2,x2=-2.解:根据平方根的意义,得x1=x2=0.解:根据平方根的意义,得 x2=-1,负数没有平方根,原方程无解.(2)当p=0 时,方程(I)有两个相等的实数根 =0;(3)当p0 时,根据平方根的

    3、意义,方程(I)有两个不等的实数根 ,;1px 2px12xx 利用平方根的定义直接开平方求一元二次方程的根的方法叫直接开平方法.归纳 例1 利用直接开平方法解下列方程:(1)x2=6;(2)x2900=0.解:(1)x2=6,直接开平方,得(2)移项,得 x2=900.直接开平方,得x=30,x1=30,x2=30.典例精析6,x1266.xx,在解方程(I)时,由方程x2=25得x=5.由此想到:(x+3)2=5,得得对照上面方法,你认为怎样解方程(x+3)2=5探究交流35,x 3535.xx ,或123535.xx ,或于是,方程(x+3)2=5的两个根为 上面的解法中,由方程得到,实

    4、质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样就把方程转化为我们会解的方程了.解题归纳例2 解下列方程:(1)即x1=3,x2=-1.解:解:移项,得 x-1是4的平方根,x-1=2.x1=,547.4 x2=(2)解:移项,得 两边都除以12,得3-2x是0.25的平方根,3-2x=0.5.即3-2x=0.5,3-2x=-0.5.214.x214 0;x 212 3 23 0.x 212 3 23,x23 20.25.x1.能用直接开平方法解的一元二次方程有什么特点?如果一个一元二次方程具有x2=p或(xn)2=p(p0)的形式,那么就可以用直接开平方法求解.2.任意一个一元

    5、二次方程都能用直接开平方法求解吗?请举例说明.探讨交流配方的方法二问题问题1.你还记得吗?填一填下列完全平方公式.(1)a2+2ab+b2=()2;(2)a2-2ab+b2=()2.a+ba-b探究交流问题问题2.填上适当的数或式,使下列各等式成立.(1)x2+4x+=(x+)2(2)x2-6x+=(x-)2(3)x2+8x+=(x+)2(4)43x2-x+=(x-)2你发现了什么规律?22232342422()323二次项系数为1的完全平方式:常数项等于一次项系数一半的平方.归纳总结想一想:x2+px+()2=(x+)22p2p配方的方法用配方法解方程三探究交流怎样解方程:x2+6x+4=0

    6、 (1)问题1 方程(1)怎样变成(x+n)2=p的形式呢?解:x2+6x+4=0 x2+6x=-4移项 x2+6x+9=-4+9两边都加上9二次项系数为1的完全平方式:常数项等于一次项系数一半的平方.方法归纳在方程两边都加上一次项系数一半的平方.注意是在二次项系数为1的前提下进行的.问题2 为什么在方程x2+6x=-4的两边加上9?加其他数行吗?不行,只有在方程两边加上一次项系数一半的平方,方程左边才能变成完成平方x2+2bx+b2的形式.方程配方的方法:要点归纳像这样通过配成完全平方式来解一元二次方程,叫做配方法.配方法的定义配方法解方程的基本思路把方程化为(x+n)2=p的形式,将一元二

    7、次方程降次,转化为一元一次方程求解配方法解方程的基本步骤一移常数项;二配方配上 ;三写成(x+n)2=p(p 0);四直接开平方法解方程.22一次项系数()45,x 例3 解下列方程:21810 xx;12415,415.xx解:(1)移项,得x28x=1,配方,得x28x+42=1+42,(x4)2=15由此可得即配方,得2223313,2424xx 231,416x31,44x 由此可得2111,.2xx二次项系数化为1,得231,22xx 2 2213 xx;解:移项,得 2x23x=1,即移项和二次项系数化为1这两个步骤能不能交换一下呢?配方,得2224211,3xx 211.3x 实

    8、数的平方不会是负数,x取任何实数时,上式都不成立,原方程无实数根解:移项,得2364,xx 二次项系数化为1,得242,3xx 2 33640.xx为什么方程两边都加12?即即例4.试用配方法说明:不论k取何实数,多项式k24k5的值必定大于零.解:k24k5=k24k41=(k-2)21(k-2)20,(k-2)211.k24k5的值必定大于零.1.方程2x2-3m-x+m2+2=0有一根为x=0,则m的值为()A.1 B.1 C.1或2 D.1或-22.应用配方法求最值.(1)2x2-4x+5的最小值;(2)-3x2+5x+1的最大值.练一练C解:(1)2x2-4x+5 =2(x-1)2+

    9、3 当x=1时有最小值3.(2)-3x2+12x-16=-3(x-2)2-4 当x=2时有最大值-4.归纳总结配方法的应用 类别类别 解题策略解题策略1.求最值或求最值或证明代数式证明代数式的值为恒正的值为恒正(或负)(或负)对于一个关于x的二次多项式通过配方成a(x+m)2n的形式后,(x+m)20,n为常数,为常数,当当a0时,可知其最小值;当a0时,可知其最大值.2.完全平方完全平方式中的配方式中的配方如:已知x22mx16是一个完全平方式,所以一次项系数一半的平方等于16,即m2=16,m=4.3.利用配方利用配方构成非负数构成非负数和的形式和的形式对于含有多个未知数的二次式的等式,求

    10、未知数的值,解题突破口往往是配方成多个完全平方式得其和为0,再根据非负数的和为0,各项均为0,从而求解.如:a2b24b4=0,则a2(b2)2=0,即a=0,b=2.当堂练习当堂练习 (C)4(x-1)2=9,解方程,得4(x-1)=3,x1=;4741x2=(D)(2x+3)2=25,解方程,得解方程,得2x+3=5,x1=1;x2=-4 1.下列解方程的过程中,正确的是()(A)x2=-2,解方程,得x=2(B)(x-2)2=4,解方程,得x-2=2,x=4 D(1)方程x2=0.25的根是 .(2)方程2x2=18的根是 .(3)方程(2x-1)2=9的根是 .3.解下列方程:(1)x

    11、2-810;(2)2x250;(3)(x1)2=4.x1=0.5,x2=-0.5x13,x2-3x12,x21解:x19,x29.解:x15,x25.解:x11,x23.4.解下列方程:(1)x2+4x-9=2x-11;(;(2)x(x+4)=8x+12;(3)4x2-6x-3=0;(4)3x2+6x-9=0.解:x2+2x+2=0,(x+1)2=-1.此方程无解.解:x2-4x-12=0,(x-2)2=16.x1=6,x2=-2.233024xx解:,2321().416x12321321,44xx.解:x2+2x-3=0,(x+1)2=4.x1=-3,x2=1.5.如图,在一块长35m、宽

    12、26m的矩形地面上,修建同样宽的两条互相垂直的道路,剩余部分栽种花草,要使剩余部分的面积为850m2,道路的宽应为多少?解:设道路的宽为xm,根据题意得(35-x)(26-x)=850,整理得x2-61x+60=0.解得x1=60(不合题意,舍去),x2=1.答:道路的宽为1m.6.若 ,求(xy)z 的值.01326422zyyxx解:对原式配方,得 由代数式的性质可知 22232 0.xyz 2220,30,2 0,xyz 2,3,2xyz,2223636.zxy 7.已知a,b,c为ABC的三边长,且 试判断ABC的形状.,0222bcacabcba解:对原式配方,得 由代数式的性质可知 ABC为等边三角形.22210,2a ba cb c2220,0,0,a ba cb c,a b c 课堂小结课堂小结配方法定义通过配成完全平方形式解一元二次方程的方法.步骤一移常数项;二配方配上 ;三写成(x+n)2=p(p 0);四直接开平方法解方程.22二次项系数()特别提醒:在使用配方法解方程之前先把方程化为x2+px+q=0的形式.应用求代数式的最值或证明直接开平方法利用平方根的定义求方程的根的方法

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:HK沪科版 八年级数学 下册第二学期春 部优公开课堂教学课件 第十七章一元二次方程 1721 配方法.ppt
    链接地址:https://www.163wenku.com/p-4126794.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库