北师大七年级数学下册《小结与复习》公开课课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《北师大七年级数学下册《小结与复习》公开课课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小结与复习 北师大 七年 级数 下册 小结 复习 公开 课件 下载 _七年级下册_北师大版(2024)_数学_初中
- 资源描述:
-
1、小结与复习第一章 整式的乘除1幂的乘法运算法则要点梳理要点梳理法则名称文字表示式子表示同底数幂的乘法同底数幂相乘,底数 ,指数 .aman (m、n为正整数)幂的乘方幂的乘方,底数 ,指数 .(am)n (m、n为正整数)积的乘方积的乘方,等于把积的每个因式分别 ,再把所得的幂 .(ab)n (n为正整数)amnamnanbn不变相乘相加不变相乘乘方注意(1)其中的a、b可以是单独的数、单独的字母,还可以是一个任意的代数式;(2)这几个法则容易混淆,计算时必须先搞清楚该不该用法则、该用哪个法则2同底数幂的除法法则(3)同底数幂相除,底数不变,指数相减.(a0,m、n为任意整数)mm nnaaa
2、(1)任何不等于零的数的零次幂都等于1.(2)负整数指数幂:010aa()11nnnaaa=(a0,n为正整数)3整式的乘法 单项式与单项式相乘,把它们的_,_分别相乘,对于只在一个单 项式中出现的字母,则连同它的指数一起作 为积的一个 .单项式与多项式相乘,用 和_ 的每一项分别相乘,再把所得的积 .多项式与多项式相乘,先用一个多项式的 _与另一个多项式的 相乘,再把所得的积 .系数相同字母的幂因式单项式多项式相加每一项每一项相加4乘法公式公式名称 平方差公式完全平方公式文字表示两数和与这两数的差的积,等于这两数的平方的差两数和(差)的平方,等于这两数的_加上(减去)_的2倍式子表示(ab)
3、(ab)(ab)2平方和这两数积a2b2a22abb2公式的常用变形a2 (ab)b2;b2(ab)(ab).a2b2(ab)2 ,或(ab)2 ;(ab)2(ab)2 .(ab)2ab2ab4ab点拨(1)乘法公式实际上是一种特殊形式的多项式的乘法,公式的主要作用是简化运算;(2)公式中的字母可以表示数,也可以表示其他单项式或多项式a2考点讲练考点讲练考点一 幂的乘法运算例1 计算:(1)(2a)3(b3)2 4a3b4;(2)(8)2017(0.125)2016.解:(1)原式=8a3b6 4a3b4=32a3+3b6+4=2a6b10.(2)原式=(8)(8)2016(0.125)201
4、6 =(8)(8)0.1252016 =(8)(1)2016=8.方法总结 幂的乘法运算包括同底数幂的乘法、幂的乘方、积的乘方.这三种运算性质贯穿全章,是整式乘法的基础.其逆向运用可将问题化繁为简,负数乘方结果的符号,奇次方得负,偶次方得正.1.下列计算不正确的是()A.2a3 a=2a4 B.(a3)2=a6 C.a4 a3=a7 D.a2 a4=a8D针对训练2.计算:0.252017(4)20178100 0.5301.解:原式=0.25(4)2017(23)100 0.5300 0.5 =1(2 0.5)300 0.5 =10.5 =1.5.解:420=(42)10=1610,1610
5、1510,4201510.3.比较大小:420与1510.考点二 整式的乘法 例2 计算:x(x2y2xy)y(x2x3y)3x2y,其中 x=1,y=3.【解析】在计算整式的加、减、乘、除、乘方的运算中,一要注意运算顺序;二要熟练正确地运用运算法则.解:原式=(x3y2x2yx2y+x3y2)3x2y =(2x3y22x2y)3x2y =6x5y36x4y2.当x=1,y=3时,原式=62769=108.方法总结 整式的乘法主要包括单项式乘以单项式、单项式乘以多项式及多项式乘以多项式,其中单项式乘以单项式是整式乘法的基础,必须熟练掌握它们的运算法则.4.一个长方形的长是a2b+1,宽为a,则
6、长方形的面积 为 .a22ab+a针对训练考点三 整式的乘法公式的运用 例3 先化简,再求值:(xy)2+(x+y)(xy)2x2,其中x=3,y=1.5.【解析】运用平方差公式和完全平方公式,先算括 号内的,再进行整式的除法运算.解:原式=(x22xy+y2+x2y2)2x =(2x22xy)2x2 =2xy.当x=3,y=1.5时,原式=9.方法总结 整式的乘法公式包括平方差公式和完全平方公式,而完全平方公式又分为两个:两数和的完全平方公式和两数差的完全平方公式,在计算多项式的乘法时,对于符合这三个公式结构特征的式子,运用公式可减少运算量,提高解题速度.5.求方程(x1)2(x1)(x+1
7、)+3(1x)=0的解.解:原方程可化为5x+5=0,解得x=1.6.已知x2+9y2+4x6y+5=0,求xy的值.解:x2+9y2+4x6y+5=0,(x2+4x+4)+(9y26y+1)=0,(x+2)2+(3y1)2=0.x+2=0,3y1=0,解得x=2,y=12(2).33xy 1,3针对训练考点四 本章数学思想和解题方法u转化思想 例4 计算:(1)2a3a2b3 (2)(2x+5+x2)(6x3).2;5bc【解析】(1)单项式乘以单项式可以转化为有理数的乘法和同底数幂的乘法;(2)多项式乘以单项式可以转化为单项式乘以单项式.解:(1)原式=1 23 1342122 3.55a
8、bca b c(2)原式=(2x)(6x3)+5(6x3)+x2(6x3)=12x430 x36x5.将要解决的问题转化为另一个较易解决的问题,这是初中数学中常用的思想方法.如本章中,多项式多项式 单项式多项式 单项式单项式 有理数的乘法和同底数幂的乘法.方法总结转化转化转化 7.计算:(4ab)(2b)2 解:原式=(4ab)4b2=16ab24b3 针对训练u整体思想 例5 若2a+5b3=0,则4a32b=.【解析】已知条件是2a+5b3=0,无法求出a,b的值因此可以逆用积的乘方先把4a32b.化简为含有与已知条件相关的部分,即4a32b=22a25b=22a+5b.把2a+5b看做一
9、个整体,因为2a+5b-3=0,所以2a+5b=3,所以4a32b=23=8.8 在本章中应用幂的运算法则、乘法公式时,可以将一个代数式看做一个字母,这就是整体思想,应用这种思想方法解题,可以简化计算过程,且不易出错.方法总结8.若xn=5,则(x3n)25(x2)2n=.12500 9.若x+y=2,则 =.221122xxyy2 针对训练例6 如图所示,在边长为a的正方形中剪去边长为b的小正方形,把剩下的部分拼成梯形,分别计算这两个图形的阴影部分的面积,验证公式是 .baaaabbbbba-bu数形结合思想a2b2=(a+b)(ab)【解析】通过图形面积的计算,验证乘法公式,从图形中的阴影
10、 部分可知其面积是两个正方形的面积差(a2b2),又由于图的梯形的上底是2b,下底是2a,高为ab,所以梯形的面积是(2a+2b)(ab)2=(a+b)(ab),根据面积相等,得乘法公式a2b2=(a+b)(ab).本章中数形结合思想主要体现在根据给定的图形写出一个代数恒等式或根据代数式画出几何图形.由几何图形得到代数恒等式时,需要用不同的方法表示几何图形的面积,然后得出代数恒等式;由代数恒等式画图时,关键在于合理拼接,往往是相等的边拼到一起方法总结我们已知道,完全平方公式可以用平面几何图形的面积来表示,实际上还有一个代数恒等式也可以用这种形式来表示,例如(2a+b)(a+b)=2a2+3ab
11、+b2,就可以用图和图等图形的面积表示.aaabbabababa2a2b2图b2a2a2abababaaabb图针对训练(2)请画一个几何图形,使它的面积能表示 (a+b)(a+3b)=a2+4ab+3b2.(1)请写出图所表示的代数恒等式;bbaabaabababababa2a2b2b2图图a2baababababb2b2b2(2a+b)(a+2b)=2a2+5ab+2b2;幂的运算乘法公式整式的乘除积的乘方平方差公式多项式与单项式相乘、相除完全平方公式整式的乘除法单项式与单项式相乘、相除多项式与多项式相乘同底数幂相乘幂的乘方同底数幂相除课堂小结课堂小结小结与复习第二章 相交线与平行线一、对
12、顶角 两个角有_,并且两边互为_,那么具有这种特殊关系的两个角叫作对顶角.对顶角性质:_.AOCBD1324公共顶点反向延长线对顶角相等要点梳理要点梳理二、垂线当两条直线相交所成的四个角中,有一个角是_时,这两条直线互相垂直,其中一条直线叫另一条直线的_,它们的交点叫_.1.垂线的定义2.经过直线上或直线外一点,_一条直线 与已知直线垂直.4.直线外一点到这条直线的垂线段的_,叫作点到 直线的距离.3.直线外一点与直线上各点的所有连线中,_最短.有且只有垂线段距离直角垂线垂足同位角、内错角、同旁内角的结构特征:同位角 “F”型内错角 “Z”型同旁内角 “U”型三、同位角、内错角、同旁内角三线八
13、角3l1l2l1 12 23 34 45 56 67 78 8四、平行线1.在同一平面内,_的两条直线叫作平行线.3.平行于同一条直线的两条直线_.2.经过直线外一点,_一条直线与已知直线平行.4.平行线的判定与性质:两直线平行 同位角相等内错角相等同旁内角互补平行线的判定平行线的性质不相交有且只有平行考点一 利用对顶角、垂线的性质求角度例1 如图,ABCD于点O,直线EF过O点,AOE=65,求DOF的度数.BACDFEO解:ABCD,AOC=90.AOE=65,COE=25.又COE=DOF(对顶角相等),DOF=25.考点讲练考点讲练1.如图直线AB、CD相交于点O,OEAB于O,OB平
14、分 DOF,DOE=50,求AOC、EOF、COF的度数解:ABOE(已知),EOB=90(垂直的定义).DOE=50(已知),DOB=40(互余的定义).AOC=DOB=40(对顶角相等).又OB平分DOF,BOF=DOB=40(角平分线定义).EOF=EOB+BOF=90+40=130.COF=CODDOF=18080=100.针对训练考点二 点到直线的距离例2 如图ACBC,CDAB于点D,CD=4.8cm,AC=6cm,BC=8cm,则点C到AB的距离是 cm;点A到BC的距离是 cm;点B到AC的距离是 cm.4.868针对训练2.如图所示,修一条路将B村庄与A村庄及公路MN连起来,
15、怎样修才能使所修的公路最短?画出线路图,并说明理由解:连接AB,作BCMN,C是垂足,线段AB和BC就是符合题意的线路图 因为从A到B,线段AB最短,从B到MN,垂线段BC最短,所以ABBC最短 与垂线段有关的作图,一般是过一点作已知直线的垂线,作图的依据是“垂线段最短”方法归纳考点三 平行线的性质和判定例3 (1)如图所示,1=72,2=72,3=60,求4的度数;解:1=2=72,a/b(内错角相等,两直线平行).3+4=180(两直线平行,同旁内角互补).3=60,4=120.ab 解:DAC=ACB(已知),AD/BC(内错角相等,两直线平行).D+DFE=180(已知),AD/EF(
16、同旁内角互补,两直线平行).EF/BC(平行于同一条直线的两条直线互相平行).(2)已知:ABCDEF321DCBA3.如图,已知 ABCD,1=30,2=90,则3=4.如图,若AECD,EBF=135,BFD=60,D=()A.75 B.45 C.30 D.15FDCEBA图(1)图(2)60D针对训练考点四考点四 相交线中的方程思想相交线中的方程思想例4 如图所示,交于点O,1=2,3:1=8:1,求4的度数.123,l l l41233l1l2l解:设1的度数为x,则2的度数为x,则3的度数为8x,根据题意可得x+x+8x=180,解得x=18.即1=2=18,而4=1+2(对顶角相等
17、).故4=36.5.如图所示,直线AB与CD相交于点O,AOC:AOD=2:3,求BOD的度数.ABCDO答案:72方法归纳 利用方程解决问题,是几何与代数知识相结合的一种体现,它可以使解题思路清晰,过程简便.在有关线段或角的求值问题中它的应用非常广泛.针对训练针对训练平面平面内两内两条直条直线的线的位置位置关系关系两条直线相交两条直线相交对顶角,相等对顶角,相等垂线,点到直线的距离垂线,点到直线的距离两条直线被第两条直线被第三条直线所截三条直线所截两直线平行两直线平行两直线平行的判定两直线平行的判定两直线平行的性质两直线平行的性质课堂小结课堂小结同位角、内错角、同旁内角同位角、内错角、同旁内
18、角两直线两直线平行的判定平行的判定同位角相等,两直线平行同位角相等,两直线平行同旁内角互补,两直线平行同旁内角互补,两直线平行两直线两直线平行的性质平行的性质两直线平行,同位角相等两直线平行,同位角相等两直线平行,内错角相等两直线平行,内错角相等两直线平行,同旁内角互补两直线平行,同旁内角互补平行线间的距离处处相等平行线间的距离处处相等内错角相等,两直线平行内错角相等,两直线平行小结与复习第三章 变量之间的关系丰富的现实情境变量及其关系利用变量之间的关系解决问题、进行预测自变量和因变量变量之间关系的探索和表示(表格、关系式、图象)分析用表格、关系式、图象所表示的变量之间的关系要点梳理要点梳理例
19、1 心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0 x30):提出概念所用时间(x)257101213141720对概念的接受能力(y)47.853.556.35959.859.959.858.355考点讲练考点讲练考点一 用表格表示的变量关系(1)上表中反映了哪两个变量之间的关系?哪个是 自变量?哪个是因变量?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?提出概念所用的时间x和对概念接受能力y两个变量,其中x是自变量,y是因变量;5913分钟(3)根据表格中的数据,你认为提出概念几分钟 时,学生的接受能力最强?(4)从表格中可知,当
20、时间x在什么范围内,学 生的接受能力逐步增强?当时间x在什么范 围内,学生的接受能力逐步降低?(5)根据表格大致估计当时间为23分钟时,学生 对概念的接受能力是多少?2分钟至13分钟时,13分钟至20分钟大约52例2 某蓄水池开始蓄水,每时进水20米3,设蓄水量为V(米3),蓄水时间为t(时).(1)V与t之间的关系式是什么?(2)若蓄水池最大蓄水量为1000米3,则需要多长时 间能蓄满水?考点二 用关系式表示的变量关系解:(1)V=20t;(2)把V=1000米3代入关系式,得1000=20t,解得t=50(时).(3)当t逐渐增加时,V怎样变化?说说你的理由.(3)当t逐渐增加时,V也在逐
21、渐增加,因为V是t的正整数倍.针对训练 1.如图,梯形上底的长是x,下底的长是15,高是8.(1)梯形面积y与上底长x之间的关系式是什么?(2)当x每增加1时,y如何变化?说说你的理由;(3)当x0时,y等于什么?此时它表示的是什么?y=4x+60 x每增加1,y增加4.当x=0时,y=60,此时它表示的是三角形的面积.考点三 用图象表示的变量关系例3(2016春蓬溪县期中)王大爷饭后出去散步,从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中下面图形表示王大爷离家时间x(分)与离家距离y(米)之间的关系是()【分析】对四个图依次进行分析,符合题意者即为所求DABC
22、DOOOOAD 利用函数的图象解决实际问题,正确理解函数图象横纵轴表示的意义,理解问题的过程,能够通过图象得到函数问题的相应解决方法总结2.星期天下午,小强和小明相约在某公交车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校图中折线表示小强离开家的路程y(千米)和所用的时间x(分)之间的函数关系下列说法错误的是()A小强从家到公共汽车站步行了2千米B小强在公共汽车站等小明用了10分钟C公交车的平均速度是34千米/小时D小强乘公交车用了30分钟x(分)y(千米)C针对训练3.甲、乙两人(甲骑自行车,乙骑摩托车)从A城出发到B城旅行.如图表示甲、乙两人离开A城的路
展开阅读全文