人教版九年级(上)第二十一章一元二次方程复习课件1 公开课.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教版九年级(上)第二十一章一元二次方程复习课件1 公开课.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版九年级上第二十一章一元二次方程复习课件1 公开课 人教版 九年级 第二十一 一元 二次方程 复习 课件 公开
- 资源描述:
-
1、复习课件第二十一章 一元二次方程一元二次方程一元二次方程的定义概念:整式方程;一元;二次.一般形式:ax2+bx+c=0(a0)一元二次方程的解法直接开平方法配方法公式法224(40)2bbacxbaca 因式分解法根 的 判 别 式 及根与系数的关系根的判别式:=b2-4ac根与系数的关系1212bxxacxxa一元二次方程 的 应 用营销问题、平均变化率问题几何问题、数字问题知识框架知识框架一、一元二次方程的基本概念一、一元二次方程的基本概念1.定义:只含有一个未知数的整式方程,并且都可以化为 ax2bxc0(a,b,c为常数,a0)的形式,这样的方程叫做一元二次方程2.一般形式:ax2
2、bx c0(a,b,c为常数,a0)要点梳理要点梳理3.项数和系数:ax2 bx c0(a,b,c为常数,a0)一次项:ax2 一次项系数:a二次项:bx 二次项系数:b常数项:c4.注意事项:(1)含有一个未知数;(2)未知数的最高次数为2;(3)二次项系数不为0;(4)整式方程 二、解一元二次方程的方法二、解一元二次方程的方法一元二次方程的解法适用的方程类型直接开平方法配方法公式法因式分解x2+px+q=0(p2-4q 0)(x+m)2n(n 0)ax2+bx+c=0(a0,b2-4ac0)(x+m)(x+n)0各种一元二次方程的解法及使用类型三、一元二次方程在生活中的应用三、一元二次方程
3、在生活中的应用列方程解应用题的一般步骤:审设列解检答(1)审题:通过审题弄清已知量与未知量之间的数量关系(2)设元:就是设未知数,分直接设与间接设,应根据实际需要恰当选取设元法(3)列方程:就是建立已知量与未知量之间的等量关系列方程这一环节最重要,决定着能否顺利解决实际问题(4)解方程:正确求出方程的解并注意检验其合理性(5)作答:即写出答语,遵循问什么答什么的原则写清答语考点一考点一 一元二次方程的定义一元二次方程的定义例1 若关于x的方程(m-1)x2+mx-1=0是一元二次方程,则m的取值范围是()A.m1 B.m=1 C.m1 D.m0解析 本题考查了一元二次方程的定义,即方程中必须保
4、证有二次项(二次项系数不为0),因此它的系数m-10,即m1,故选A.A1.方程5x2-x-3=x2-3+x的二次项系数是 ,一次项系数是 ,常数项是 .4-20考点讲练考点讲练针对训练针对训练考点二考点二 一元二次方程的根的应用一元二次方程的根的应用解析 根据一元二次方程根的定义可知将x=0代入原方程一定会使方程左右两边相等,故只要把x=0代入就可以得到以m为未知数的方程m2-1=0,解得m=1的值.这里应填-1.这种题的解题方法我们称之为“有根必代”.例2 若关于x的一元二次方程(m-1)x2+x+m2-1=0有一个根为0,则m=.【易错提示】求出m值有两个1和-1,由于原方程是一元二次方
5、程,所以1不符合,应引起注意.-1针对训练针对训练2.一元二次方程x2+px-2=0的一个根为2,则p的值为 .-1【易错提示】(1)配方法的前提是二次项系数是1;(a-b)2与(a+b)2 要准确区分;(2)求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯解析(1)配方法的关键是配上一次项系数一半的平方;(2)先求出方程x213x+36=0的两根,再根据三角形的三边关系定理,得到符合题意的边,进而求得三角形周长考点三考点三 一元二次方程的解法一元二次方程的解法例3(1)用配方法解方程x2-2x-5=0时,原方程应变为()A.(x-1)2=6 B.(x+2)2
6、=9 C.(x+1)2=6 D.(x-2)2=9(2)(易错题)三角形两边长分别为3和6,第三边的长是方程x213x+36=0的根,则该三角形的周长为()A13 B 15 C18 D13或18AA3.菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.24A针对训练针对训练4.用公式法和配方法分别解方程:x2-4x-1=0 (要求写出必要解题步骤).1-4-1.abc,公式:,法22-4=-4-41-1=200.bac 2-420425.221bbacxa方程有两个不相等的实数根 1225,25.xx4
7、.用公式法和配方法分别解方程:x2-4x-1=0 (要求写出必要解题步骤).241.xx移得配法项:,方2224212.xx配方,得225x 2=5x由 此 可 得,1225,25.xx【名师示范课名师示范课】人教版九年级上册人教版九年级上册 第二十一章第二十一章 一元二次方程一元二次方程 复习课件复习课件1(1(共共2323张张PPT)-PPT)-公开课课件(推荐)公开课课件(推荐)【名师示范课名师示范课】人教版九年级上册人教版九年级上册 第二十一章第二十一章 一元二次方程一元二次方程 复习课件复习课件1(1(共共2323张张PPT)-PPT)-公开课课件(推荐)公开课课件(推荐)考点四考点
8、四 一元二次方程的根的判别式的应用一元二次方程的根的判别式的应用例4 已知关于x的一元二次方程x2-3m=4x有两个不相等的实数根,则m的取值范围是()A.B.m2 C.m 0 D.m0,即42-41(-3m)=16+12m0,解得 ,故选A.43m 【名师示范课名师示范课】人教版九年级上册人教版九年级上册 第二十一章第二十一章 一元二次方程一元二次方程 复习课件复习课件1(1(共共2323张张PPT)-PPT)-公开课课件(推荐)公开课课件(推荐)【名师示范课名师示范课】人教版九年级上册人教版九年级上册 第二十一章第二十一章 一元二次方程一元二次方程 复习课件复习课件1(1(共共2323张张
9、PPT)-PPT)-公开课课件(推荐)公开课课件(推荐)5.下列所给方程中,没有实数根的是()A.x2+x=0 B.5x2-4x-1=0 C.3x2-4x+1=0 D.4x2-5x+2=06.(开放题)若关于x的一元二次方程x2-x+m=0有两个不相等的实数根,则m的值可能是(写出一个即可)D0针对训练针对训练【名师示范课名师示范课】人教版九年级上册人教版九年级上册 第二十一章第二十一章 一元二次方程一元二次方程 复习课件复习课件1(1(共共2323张张PPT)-PPT)-公开课课件(推荐)公开课课件(推荐)【名师示范课名师示范课】人教版九年级上册人教版九年级上册 第二十一章第二十一章 一元二
展开阅读全文