《第四章 指数函数与对数函数》章节复习与练习课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《第四章 指数函数与对数函数》章节复习与练习课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四章 指数函数与对数函数 第四章 指数函数与对数函数章节复习与练习课件 第四 指数函数 对数 函数 章节 复习 练习 课件
- 资源描述:
-
1、第四章指数函数与对数函数网络构建 核心归纳1.指数函数的图象和性质 一般地,指数函数yax(a0且a1)的图象与性质如下表所示.a10a0时,y1;当x0时,0y0时,0y1;当x1在(,)上是增函数在(,)上是减函数注意(1)对于a1与0a1时,a值越大,图象向上越靠近y轴,递增速度越快;0a10a1时,y0;当0 x1时,y1时,y0;当0 x0在(0,)上是增函数在(0,)上是减函数3.指数函数与对数函数的关系对数函数ylogax(a0且a1)与指数函数yax(a0且a1)互为反函数,其图象关于直线yx对称(如图).4.函数的零点与方程的根的关系函数f(x)的零点就是方程f(x)0的解,
2、函数f(x)的零点的个数与方程f(x)0的解的个数相等,也可以说方程f(x)0的解就是函数f(x)的图象与x轴交点的横坐标,即函数f(x)的函数值等于0时自变量x的取值.因此方程的解的问题可以转化为函数问题来解决.讨论方程的解所在的大致区间可以转化为讨论函数的零点所在的大致区间,讨论方程的解的个数可以转化为讨论函数的零点的个数.5.函数零点存在定理 (1)该定理的条件是:函数f(x)在区间a,b上的图象是连续不断的;f(a)f(b)0,得x1,即函数的定义域为(,1),排除选项B,又易知函数在其定义域上是减函数,故选C.法二函数y2log4(1x)的图象可认为是由ylog4x的图象经过如下步骤
3、变换得到的:(1)函数ylog4x的图象上所有点的横坐标不变,纵坐标变为原来的2倍,得到函数y2log4x的图象;(2)把函数y2log4x的图象关于y轴对称得到函数y2log4(x)的图象;(3)把函数y2log4(x)的图象向右平移1个单位,即可得到y2log4(1x)的图象,故选C.答案C【训练2】在同一直角坐标系中,函数f(x)xa(x0),g(x)logax的图象可能是()解析幂函数f(x)xa的图象不过(0,1)点,故A错;B项中由对数函数f(x)logax的图象知0a1,而此时幂函数f(x)xa的图象应是增长越来越快的变化趋势,故C错.答案D要点三大小比较问题数的大小比较常用方法
4、:(1)比较两数(式)或几个数(式)大小问题是本章的一个重要题型,主要考查指数函数、对数函数的图象与性质的应用及差值比较法与商值比较法的应用.常用的方法有单调性法、图象法、中间搭桥法、作差法、作商法.(2)当需要比较大小的两个实数均是指数幂或对数式时,可将其看成某个指数函数、对数函数的函数值,然后利用该函数的单调性比较.(3)比较多个数的大小时,先利用“0”和“1”作为分界点,即把它们分为“小于0”,“大于或等于0且小于或等于1”,“大于1”三部分,再在各部分内利用函数的性质比较大小.答案C答案A要点四函数的零点与方程的根函数的零点与方程的根的关系及应用(1)函数的零点与方程的根的关系:方程f
5、(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点.(2)确定函数零点的个数有两个基本方法:利用图象研究与x轴的交点个数或转化成两个函数图象的交点个数进行判断.法一(函数单调性法)当x0时,f(x)2x6ln x.而f(1)216ln 140,所以f(1)f(3)0时,由f(x)0,得2x6ln x0,即ln x62x.如图,分别作出函数yln x和y62x的图象.显然,由图可知,两函数图象只有一个交点,且在y轴的右侧,故当x0时,f(x)0只有一个解.综上,函数f(x)共有2个零点.(2)如图,当xm时,f(x)|x|.当xm时,f(x)x22mx4m,在(m,)为增函数.
6、若存在实数b,使方程f(x)b有三个不同的根,则m22mm4m|m|.m0,m23m0,解得m3.答案(1)2(2)(3,)【训练4】已知关于x的方程a4xb2xc0(a0),常数a,b同号,b,c异号,则下列结论中正确的是()A.此方程无实根B.此方程有两个互异的负实根C.此方程有两个异号实根D.此方程仅有一个实根答案D要点五函数模型的应用1.建立恰当的函数模型解决实际问题的步骤(1)对实际问题进行抽象概括,确定变量之间的主被动关系,并用x,y分别表示.(2)建立函数模型,将变量y表示为x的函数,此时要注意函数的定义域.(3)求解函数模型,并还原为实际问题的解.2.建模的三个原则(1)简化原
7、则:建立模型,要对原型进行一定的简化,抓主要因素、主变量,尽量建立较低阶、较简便的模型.(2)可推演原则:建立的模型一定要有意义,既能对其进行理论分析,又能计算和推理,且能推演出正确结果.(3)反映性原则:建立的模型必须真实地反映原型的特征和关系,即应与原型具有“相似性”,所得模型的解应具有说明现实问题的功能,能回到具体研究对象中去解决问题.解(1)由题意得G(x)2.8x.f(x)R(x)G(x)(2)当0 x5时,由0.4x23.2x2.80得x28x70,解得1x7,15时,由8.2x0,得x8.2,所以5x8.2.综上,当1x0,即当产量x大于100台,小于820台时,能使工厂有盈利.
展开阅读全文