书签 分享 收藏 举报 版权申诉 / 12
上传文档赚钱

类型大数定律与中心极限定理学习培训模板课件.ppt

  • 上传人(卖家):林田
  • 文档编号:4094570
  • 上传时间:2022-11-10
  • 格式:PPT
  • 页数:12
  • 大小:199.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《大数定律与中心极限定理学习培训模板课件.ppt》由用户(林田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    大数 定律 中心 极限 定理 学习 培训 模板 课件
    资源描述:

    1、 特征函数 大数定律 中心极限定理 讨论独立随机变量和的极限分布,并指出极限分布为正态分布.设 Xn 为独立随机变量序列,记其和为1niinYX定理4.4.1 林德贝格勒维中心极限定理设 Xn 为独立同分布随机变量序列,数学期望为,方差为 20,则当 n 充分大时,有1lim()niinXnnPyy应用之例:正态随机数的产生;误差分析例4.4.1 每袋味精的净重为随机变量,平均重量为 100克,标准差为10克.一箱内装200袋味精,求一箱味精的净重大于20500克的概率?解:设箱中第 i 袋味精的净重为 Xi,则Xi 独立同分布,且 E(Xi)=100,Var(Xi)=100,由中心极限定理得

    2、,所求概率为:200120500200 100205001200 100iiPX 1(3.54)=0.0002故一箱味精的净重大于20500克的概率为0.0002.(很小)例4.4.2 设 X 为一次射击中命中的环数,其分布列为求100次射击中命中环数在900环到930环之间的概率.XP10 9 8 7 6 0.8 0.1 0.05 0.02 0.03解:设 Xi 为第 i 次射击命中的环数,则Xi 独立同分布,且 E(Xi)=9.62,Var(Xi)=0.82,故10019301009.629001009.629009301000.821000.82iiPX(3.53)(6.85)=0.99

    3、979定理4.4.2 棣莫弗拉普拉斯中心极限定理设n 为服从二项分布 b(n,p)的随机变量,则当 n 充分大时,有lim()nnnpnpqPyy是林德贝格勒维中心极限定理的特例.二项分布是离散分布,而正态分布是连续分布,所以用正态分布作为二项分布的近似时,可作如下修正:1212210.50.50.50.5 nnP kkP kkknpknpnpqnpq 中心极限定理的应用有三大类:ii)已知 n 和概率,求y;iii)已知 y 和概率,求 n.i)已知 n 和 y,求概率;例4.4.3 100个独立工作(工作的概率为0.9)的部件组成一个系统,求系统中至少有85个部件工作的概率.解:用由此得:

    4、Xi=1表示第i个部件正常工作,反之记为Xi=0.又记Y=X1+X2+X100,则 E(Y)=90,Var(Y)=9.185 0.5 90850.9669.P Y 例4.4.4 有200台独立工作(工作的概率为0.7)的机床,每台机床工作时需15kw电力.问共需多少电力,才可 有95%的可能性保证正常生产?解:用设供电量为y,则从Xi=1表示第i台机床正常工作,反之记为Xi=0.又记Y=X1+X2+X200,则 E(Y)=140,Var(Y)=42./15 0.5 140150.9542yPYy 2252.y中解得例4.4.5 用调查对象中的收看比例 k/n 作为某电视节 目的收视率 p 的估

    5、计。要有 90 的把握,使k/n与p 的差异不大于0.05,问至少要调查多少对象?解:用根据题意Yn表示n 个调查对象中收看此节目的人数,则20.90/0.050.05/(1)1nPYnpn pp0.05/(1)1.645n pp从中解得Yn 服从 b(n,p)分布,k 为Yn的实际取值。又由0.25(1)pp可解得270.6nn=271例4.4.6 设每颗炮弹命中目标的概率为0.01,求500发炮弹中命中 5 发的概率.解:设 X 表示命中的炮弹数,则X b(500,0.01)55495500(1)(5)0.010.99P XC0.17635(2)应用正态逼近:P(X=5)=P(4.5 X 5.5)5.554.554.954.95=0.1742

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:大数定律与中心极限定理学习培训模板课件.ppt
    链接地址:https://www.163wenku.com/p-4094570.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库