§4-3广义根轨迹学习培训模板课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《§4-3广义根轨迹学习培训模板课件.ppt》由用户(林田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广义 轨迹 学习 培训 模板 课件
- 资源描述:
-
1、一、参数根轨迹一、参数根轨迹 为与以开环增益为参量的普通根轨迹相区别,以非开环增益的其他参量为参变量的根轨迹称为反馈系统的参数根轨迹。绘制参数根轨迹的方法与180和0根轨迹规则一样,只是把特征方程化为如下形式:01Q(S)(s)P绘制参数根轨迹的一般步骤如下:绘制参数根轨迹的一般步骤如下:(1)写出原系统的特征方程;(2)以特征方程式中不含参数的各项去除特征方程,得等效系统的根轨迹方程。该方程中原系统的参数即为等效系统的根轨迹增益;(3)绘制等效系统的根轨迹,即为原系统的参数根轨迹。例1:已知控制系统的闭环传递函数为 ,试绘制参数p变化时的根轨迹。44)(2psss解:解:系统特征方程为 ,0
2、42 pss上式和根轨迹方程具有相同的形式,其左边部分 相当于某一开环系统传递函数,称为等效系统开环传递函数,参数p称为等效根轨迹增益。利用根轨迹绘制法则,可以绘出当p从零变化到无穷大时等效系统的根轨迹。也可写成142ssp42ssp(1)起点:s1 2,s2 -2。(2)终点:s1 0,s2-。(3)实轴上的根轨迹存在区间(,0。(4)会合点:据公式 N(s)D(s)N(s)D(s)0可解得2s因为 s 2不在根轨迹上,所以 s 2为会合点。(5)复平面上的根轨迹:可以证明根轨迹在复平面上为半圆,方程为2222根据以上几点,以p为参变量的根轨迹如下图所示。例2:已知单位反馈系统的开环传递函数
3、为 ,的变化范围为0,试绘制系统的闭环根轨迹。)1()(41)(2ssssGK解:解:系统闭环特征方程为 ,04141)(23ssssD也可写成04141123sss等效开环传递函数为 ,21)21()(ssKsG41K,变化范围为0,按照绘制常规根轨迹的基本原则确定根轨迹的各项参数:(1)终点:无开环有限零点。(2)起点:p1 0,p2 p3 。(3)实轴上的根轨迹存在区间(,0。21(4)根轨迹有三条渐近线 (5)根轨迹的分离点:据公式 N(s)D(s)N(s)D(s)0可解得120,180,60,3161,2121ss(6)根轨迹与虚轴的交点。根据闭环特征方程列写Routh表如下4414
4、1411123sss当1时,Routh表的s1行元素全为零,辅助方程为041)(2 ssA解得212,1js作系统参数根轨迹如下图所示。)0,1,2,(2180-)p(s-)z(sG(s)H(s)K1)()(|G(s)H(s)|1G(S)H(S)0G(S)H(S)-1 n1jm1in1jm1i11相角条件幅值条件分别为故幅值条件和相角条件对于正反馈系统jijinjjmiipszs二、零度根轨迹二、零度根轨迹 零度根轨迹的绘制,原则上可参照常规根轨迹的绘制法则,但在与零度根轨迹的绘制,原则上可参照常规根轨迹的绘制法则,但在与相角条件有关的一些法则中,需作适当调整。相角条件有关的一些法则中,需作适
5、当调整。下面给出绘制零度根轨迹的基本法则:(1)根轨迹的起点、终点和条数同常规根轨迹。(2)实轴上的根轨迹存在的区间为其右侧实轴上的开环零点和极点个数之和为偶数。(3)根轨迹的分离点和会合点的计算方法同常规根轨迹。(4)根轨迹的渐近线与实轴的交点的计算方法同常规根轨迹。倾角的计算公式为 (5)根轨迹的出射角和入射角的计算公式为 (6)根轨迹与虚轴交点的计算方法同常规根轨迹。其它性质均同常规根轨迹。2,1,0m-n2180njjmiirnjjmii111111C (1)起点:s1 0,s2-1,s3-5。(2)终点:三条根轨迹都趋向无穷远。(3)实轴上根轨迹存在的区间为-5,-1,(0,+)。(
展开阅读全文