书签 分享 收藏 举报 版权申诉 / 16
上传文档赚钱

类型福建省晋江市五校联考2022-2023高二上学期数学期中试卷+答案.pdf

  • 上传人(卖家):副主任
  • 文档编号:4079323
  • 上传时间:2022-11-09
  • 格式:PDF
  • 页数:16
  • 大小:585.03KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《福建省晋江市五校联考2022-2023高二上学期数学期中试卷+答案.pdf》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    福建省 晋江市 联考 2022 2023 高二上 学期 数学 期中 试卷 答案 下载 _考试试卷_数学_高中
    资源描述:

    1、第 1 页 共 4 页20222023 学年上学期五校联考期中测试卷高二数学命题人:审题人:(考查范围:第 1 章第 3 章椭圆考试时间:120 分钟试卷满分:150 分)一一、单单项项选选择择题题:本本题题共共 8 8 小小题题,每每小小题题5 5 分分,共共 4 40 0 分分.在在每每个个小小题题绐绐岀岀的的四四个个选选项项中中,只只有有一一项项是是符符合合题题目目要要求求的的.1如图,在平行六面体1111ABCDABC D中,设1,ABa ADb AAc,则1BD ()AabcB+a b cC+ab cD+a bc2向量2,1,3ax,1,2,9by,若/a b,则()A1xyB1=2

    2、x,12y C16x,32y D16x ,23y 3直线1:70lxmy和直线2:2320lmxym互相垂直,则实数m的值为()A3m B1=2mC=1m或=3mD1m 或=3m4若方程2260 xyxm表示一个圆,则 m 的取值范围是()A,9B,9 C9,D9,5已知直线2ykx与圆C:222xy交于A,B两点,且2AB,则k的值为()A33B3C3D26已知1F,2F是椭圆C:22194xy的两个焦点,点M在C上,则12MFMF的最大值为()A13B12C9D67若点m n,在直线:34130lxy上,则221mn的最小值为()A3B4C2D68向量的运算包含点乘和叉乘,其中点乘就是大家

    3、熟悉的向量的数量积现定义向量的叉乘:给定两个不共线的空间向量a与b,a b规定:a b为同时与a,b垂直的向量;a,b,a b三个向量构成右手系(如图 1);sin,aba ba b;若111,ax y z,222,bxy z,则第 2 页 共 4 页111111222222,y zx zx ya by zx zxy rr,其中,a badbcc d 如图 2,在长方体中1111ABCDABC D,2ABAD,13AA,则下列结论正确的是()A1ABADAA BABADADAB C111ABADAAABAAADAAuuu ruuuruuuruuu ruuuruuuruuurD长方体1111AB

    4、CDABC D的体积1VABADC Cuuu ruuuruuuu r二二、多项选择题多项选择题(本题共本题共 4 4 小题小题,每小题每小题 5 5 分分,共共 2020 分分在每小题给出的选项中在每小题给出的选项中,有多项符合题目要求有多项符合题目要求,全部选对的得全部选对的得 5 5 分,部分选对的得分,部分选对的得 2 2 分,有选错的得分,有选错的得 0 0 分)分)9“方程22122xymm表示椭圆”的一个充分条件是()A1m B0m C1m D0m 10下列说法中,正确的有()A过点(1,2)P且在x轴,y轴截距相等的直线方程为30 xyB直线2ykx在y轴的截距是 2C直线310

    5、 xy 的倾斜角为 30D过点(5,4)且倾斜角为 90的直线方程为50 x 11已知空间中三点0,1,0A,2,2,0B,1,3,1C,则下列结论正确的有()AABAC B与AB 共线的单位向量是1,1,0CAB 与BC 夹角的余弦值是5511D平面ABC的一个法向量是1,2,512圆 M:222430 xyxy关于直线260axby对称,记点,P a b,下列结论正确的是()A点 P 的轨迹方程为30 xyB以 PM 为直径的圆过定点2,1QCPM的最小值为 6D若直线 PA 与圆 M 切于点 A,则4PA 三、填空题(本题共三、填空题(本题共 4 4 小题,每小题小题,每小题 5 5 分

    6、,共计分,共计 2020 分)分)13以点(1,1),(3,3)AB为直径的圆的一般式方程为_第 3 页 共 4 页14若焦点在 x 轴上的椭圆221102xymm的焦距为 4,则=m_15已知两直线1:240lxy,2:4350lxy若直线3:260laxy与1l,2l不能构成三角形,则满足条件的实数=a_(写出一个即可)16三个“臭皮匠”在阅读一本材料时发现原来空间直线与平面也有方程即过点000,P xyz且一个法向量为=,na b c的平面的方程为0000a xxb yyc zz,过点000,P xyz且方向向量为=,0vm n tmnt的直线 l 的方程为000=xxyyzzmnt三个

    7、“臭皮匠”利用这一结论编了一道题:“已知平面的方程为+1=0 xy z,直线 l 是两个平面20 xy与2+1=0 xz的交线,则直线 l 与平面所成的角的正弦值是多少?”想着这次可以难住“诸葛亮”了谁知“诸葛亮”很快就算出了答案请问答案是_四、四、解答题:本题共解答题:本题共6 6 小题,共计小题,共计 7070 分解答时应写出文字说明、证明过程或演算步骤分解答时应写出文字说明、证明过程或演算步骤.17如图,在四棱锥PABCD中,底面ABCD是平行四边形,Q 为PC的中点.(1)用AB,AD,AP 表示BQ;(2)若底面ABCD是正方形,且1PAAB,3PABPAD,求AQ.18已知ABC的

    8、顶点(5,1)B,AB边上的高所在的直线方程为250 xy.(1)求直线AB的一般式方程;(2)在下列两个条件中任选一个,求直线AC的一般式方程.角 A 的平分线所在直线方程为2130 xy;BC边上的中线所在的直线方程为250 xy.(注:如果选择多个条件分别解答,按第一个解答计分.)第 4 页 共 4 页19已知ABC的三顶点坐标为101232ABC,求(1)ABC的外接圆C的方程;(2)过点3 2P,作圆C的切线,求切线方程.20已知椭圆C的长轴长为10,两焦点12,F F的坐标分别为3,0和3,0(1)求椭圆的标准方程;(2)若P为椭圆C上一点,2PFx轴,求12FPF的面积21 如图

    9、,在三棱台111ABCABC中,90,4BACABAC,111112A AABAC,侧棱1A A 平面 ABC,点 D 是棱1CC的中点.(1)证明:1BB 平面 AB1C;(2)求平面 BCD 与平面 ABD 的夹角的余弦值.22在平面直角坐标系 xOy 中,动圆 P 与圆1C:2245204xyx内切,且与圆2C:223204xyx外切,记动圆 P 的圆心的轨迹为 E(1)求轨迹 E 的方程;(2)过圆心2C的直线交轨迹 E 于 A,B 两个不同的点,过圆心1C的直线交轨迹 E 于 D,G 两个不同的点,且ABDG,求四边形 ADBG 面积的最小值答案第 1页,共 12页20222023

    10、学年上学期五校联考期中测试卷参考答案:1B【分析】根据空间向量线性运算求解即可.【详解】连接1AD,如图所示:111BDADABAAADABcba .故选:B2C【分析】根据题意,设bka,即2,1,31,2,9xky,即可求得x、y的值【详解】因为向量2,1,3ax,1,2,9by,且/a b,则设bka,即2,1,31,2,9xky,则有13k,则123x,1123y,解得16x,32y ,故选:C3B【分析】由两直线互相垂直,直接列方程求解即可.【详解】因为直线1:70lxmy和直线2:2320lmxym互相垂直,所以230mm,解得1=2m,故选:B4A【分析】运用配方法,结合圆的标准

    11、方程的特征进行求解即可.【详解】由2260 xyxm,得22390 xym,则9m.故选:A5B【分析】利用圆的弦长、弦心距、半径关系,以及点线距离公式列方程求 k 值.【详解】由题设(0,0)C且半径2r,弦长2AB,所以C到2ykx的距离22|()12ABdr,答案第 2页,共 12页即2211k,可得3k .故选:B6C【分析】本题通过利用椭圆定义得到1226MFMFa,借助基本不等式212122MFMFMFMF即可得到答案【详解】由题,229,4ab,则1226MFMFa,所以2121292MFMFMFMF(当且仅当123MFMF时,等号成立)故选:C【点睛】7C【分析】将221mn转

    12、化为两点距离,即可求解【详解】解:22(1)mn表示点(1,0)与点(,)m n的距离,且点(1,0)在直线外则22(1)mn的最小值为点(1,0)到直线34130 xy的距离,即22|313|234,故22(1)mn的最小值为 2故选:C8C【分析】利用向量的叉乘的定义逐项分析即得.【详解】解法一:1AA同时与AB,AD垂直;1AA,AB,AD三个向量构成右手系,且1sin,2 2 sin9043ABADAB ADAB ADAA uuu r uuuruuu r uuuruuu r uuuruuur,所以选项 A 错误;根据右手系知:ABAD 与ADAB 反向,所以ABADADAB ,故选项

    13、B 错误;因为112 23 sin906 2ABADAADBBB uuu ruuuruuuruuu ruuur,且11DBBBBDBB uuu ruuuruuu ruuur与CA 同向共线;又因为12 3 sin906ABAA uuu ruuur,且1ABAA 与DA 同向共线,答案第 3页,共 12页12 3 sin906ADAA uuuruuur,1ADAA与DC同向共线,所以116 2ABAAADAAuuu ruuuruuuruuur,且11ABAAADAAuuu ruuuruuuruuur与CA 同向共线,11ABADAAABAAADAAuuu ruuuruuuruuu ruuuruu

    14、ur,故选项 C 正确;因为长方体1111ABCDABC D的体积为22 312 又因为由右手系知向量ABAD 方向垂直底面向上,与1C C 反向,所以10ABADC Cuuu ruuuruuuu r,故选项 D 错误;故选:C解法二:如图建立空间直角坐标系:0,2,0AB ,2,0,0AD ,10,0,3AA,则0,0,4ABADuuu ruuur,所以选项 A 错误;10,0,3C C uuuu r,则112ABADC C uuu ruuuruuuu r,故选项 D 错误;0,0,4ADABuuuruuu r,故选项 B 错误;2,2,0ABADDBuuu ruuuruuur,则16,6,

    15、0ABADAAuuu ruuuruuur,16,0,0ABAAuuu ruuur,10,6,0ADAAuuuruuur,则116,6,0ABAAADAAuuu ruuuruuuruuur所以111ABADAAABAAADAAuuu ruuuruuuruuu ruuuruuuruuur,故选项 C 正确;故选:C9AC【分析】求出22122xymm表示椭圆时m的取值范围,进而选出答案.【详解】若方程22122xymm表示椭圆,则20,20,22,mmmm,解得:20m 或02m.故1m 与1m 是20m 或02m的充分条件,故选:AC.10CD【分析】根据直线的截距、倾斜角、直线方程等知识确定正

    16、确答案.答案第 4页,共 12页【详解】A 选项,直线2yx过点(1,2)P且在x轴,y轴截距相等,所以 A 选项错误.B 选项,直线2ykx在y轴上的截距是2,B 选项错误.C 选项,直线310 xy 的斜率为33,倾斜角为30,C 选项正确.D 选项,过点(5,4)且倾斜角为 90的直线方程为50 x,D 选项正确.故选:CD11AD【分析】A 选项,数量积为 0,则两向量垂直;B 选项,判断出1,1,0不是单位向量,且与AB 不共线;C 选项,利用向量夹角坐标公式进行求解;D 选项,利用数量积为 0,证明出,mAB mBC ,从而得到结论.【详解】2,1,01,2,1220AB AC ,

    17、故ABAC,A 正确;1,1,0不是单位向量,且1,1,0与2,1,0AB 不共线,B 错误;2,1,03,1,1555cos,1151155AB BCAB BCABBC ,C 错误;设1,2,5m,则 1,2,52,1,0220m AB ,1,2,53,1,13250m BC ,所以,mAB mBC ,又ABBCB,所以平面ABC的一个法向量是1,2,5,D 正确.故选:AD12ABD【分析】由题意可知260axby过圆心,代入即可得30,ab 作出图象,利用直线与圆的关系依次判断各选项即可求得结果.【详解】圆 M:222430 xyxy配方得:22(1)(2)2xy,圆 M 关于直线260

    18、axby对称,直线260axby过圆心1,2M.2260ab,即30,ab 点 P 的轨迹方程为30 xy,A 正确.由2 111 2MQk ,则1MQpQkk,则以 PM 为直径的圆过定点2,1Q,B 正确.答案第 5页,共 12页PM的最小值即为1,2M 到直线30 xy的距离,由于12363 21 12d,则min3 2PMPQ,C 错误.由于2222PAPMAMPM,要使PA取最小,即PM取最小值,min3 2PMPQ,221824PAPQ,则 D 正确.故选:ABD1322240 xyxy【分析】根据AB为直径,得到直径和圆心坐标,然后写方程即可.【详解】因为1,1A,3,3,所以2

    19、21 31 32 5AB ,AB中点坐标为1,2,所以以AB为直径的圆的标准方程为22125xy,展开得一般式方程为22240 xyxy.故答案为:22240 xyxy.144【分析】根据椭圆中基本量的关系得到关于 m 的方程,解方程得到 m 的值.【详解】因为椭圆22+=1102xymm的焦点在 x 轴上且焦距为 4,所以24102=2mm,解得=4m.故答案为:4.151或83或2【分析】分别讨论31ll或32ll或3l过1l与2l的交点时,即可求解.【详解】由题意可得,当31ll时,不能构成三角形,此时:21 2a ,解得:1a;当32ll时,不能构成三角形,此时:342a,解得:83a

    20、;当3l过1l与2l的交点时,不能构成三角形,此时:联立1l与2l,得2+4=04+3+5=0 xyxy,解得=2=1xy,答案第 6页,共 12页所以1l与2l过点2,1,将2,1代入3l得:(2)2 160a ,解得2a ;综上:当1a 或83或2时,不能构成三角形.故答案为:1或83或2.1623【分析】求出已知的三个平面的法向量,由直线 l 是两个平面20 xy与2+1=0 xz的交线,求出直线的方向向量,再根据线面角的向量求法,可得答案.【详解】因为平面的方程为+1=0 xy z,故其法向量可取为(1,1,1)p ,平面20 xy的法向量可取为(1,1,0)m,平面2+1=0 xz的

    21、法向量可取为(2,0,1)n,直线 l 是两个平面20 xy与2+1=0 xz的交线,设其方向向量为(,)s t q,则=0=2=0mstnsq ,令1s,则(1,1,2),故设直线 l 与平面所成的角为,0,2,则22sin|cos,|3|36ppp ,故答案为:2317(1)111222ADAPAB ;(2)52【分析】(1)根据空间向量基本定理结合空间向量的线性运算即可得解;(2)将AQ用AB,AD,AP 表示,再根据向量数量积的运算律计算即可得解.解:(1)1122BQBCCQADCPADCDDP 11112222ADABAPADADAPAB ;(2)1122AQAPPQAPPCAPP

    22、DDC 11112222APADAPABADAPAB ,答案第 7页,共 12页所以2111222AQADAPAB 22212222ADAPABAD APAD ABAB AP 11151 1 12 1 102 1 12222 .18(1)2110 xy(2)答案详见解析【分析】(1)求得直线AB的斜率,进而求得直线AB的一般式方程.(2)若选,先求得A点的坐标,求得B关于直线2130 xy对称点1B的坐标,从而求得直线AC的一般式方程.若选,先求得A点的坐标,根据线段BC的中点在直线250 xy以及C在直线250 xy上求得C点的坐标,从而求得直线AC的一般式方程.解:(1)AB边上的高所在的

    23、直线方程为250 xy,斜率为12,所以直线AB的斜率为2,所以直线AB的方程为125yx ,整理得2110 xy.(2)若选,角 A 的平分线所在直线方程为2130 xy,2+11=0=3+213=0=5x yxxyy,故3,5A.设1,B a b是点B关于直线2130 xy的对称点,则11=152+5+1+213=022baab,解得3729,55ab,即137 29,55B,由于137 29,55B是直线AC上的点,所以29525371135ACk,所以直线AC的方程为25311yx,整理得直线AC的一般式方程为211490 xy.若选,BC边上的中线所在的直线方程为250 xy,答案第

    24、 8页,共 12页25=0=42+11=0=3xyxx yy,故4,3A.设,C m n,则BC的中点51,22mn在直线250 xy上,即5125022mn,整理得210mn,,C m n在直线250 xy,即250mn,25=0=121=0=3mnmmnn,即1,3C ,所以336415ACk ,所以直线AC的方程为6345yx,整理得直线AC的一般式方程为6590 xy.19(1)222410 xyxy;(2)30 x或3410 xy【分析】(1)设外接圆的一般方程为220 xyDxEyF,代入点坐标,待定系数即得解;(2)分k不存在,存在两种情况讨论,利用圆心到直线距离等于半径,求解即

    25、可.解:(1)不妨设外接圆的一般方程为2222+=040 xyDx Ey FDEF,故1+=01+42+=09+4+32+=0D FDE FDE F,解得:=2,=4,=1DEF即ABC的外接圆的方程为:22+2+4+1=0 xyxy(2)由题意,2222+2+4+1=0(1)+(+2)=4xyxyxy故圆心为(1,2),半径=2r,若切线的斜率不存在,则3=0 x,此时圆心到直线的距离|13|=2=1dr,成立,故3=0 x为圆 C 的切线;若切线的斜率存在,不妨设切线为:2=(3)3+2=0yk xkxyk,圆心到直线的距离:2|+23+2|=2+1kkdk,解得3=4k答案第 9页,共

    26、12页故切线方程为:3410 xy 综上,过点3 2P,的圆C的切线方程为:3=0 x或3410 xy 20(1)2212516xy(2)485【解析】(1)根据椭圆的长轴即焦点坐标,可得,a c.由椭圆中满足222abc,即可求得2b,进而得椭圆的标准方程.(2)根据2PFx,可得P点坐标,即可求得12FPF的面积【详解】(1)椭圆C的长轴长为10,两焦点12,F F的坐标分别为3,0和3,0则210,3ac,且222abc,解得25,16ab所以椭圆的标准方程为2212516xy(2)P为椭圆C上一点,2PFx轴所以点P的横坐标为3x,代入椭圆方程可求得点P的纵坐标为165y 不妨设点P在

    27、x轴上方,则163,5P所以1 21212F PFPSFFy161485562【点睛】本题考查了椭圆标准方程的求法,椭圆的几何性质简单应用,焦点三角形面积求法,属于基础题.21(1)证明见解析(2)3015【分析】(1)根据等腰直角三角形的性质,可得,根据线面垂直的性质定理以及判定定理,可得,再结合线面垂直判定定理,可得答案.(2)利用等体积法,由三棱锥的体积等于三棱锥,可得答案;(3)建立空间直线坐标系,求两个平面的法向量,利用向量叫夹角公式,根据面面角与法向量夹角的关系,可得答案.解:(1)在平面内,过作,且,答案第 10页,共 12页则,在中,易知,即,平面,平面,且,平面,平面,平面,

    28、平面,平面.(2)以点为原点,分别以所在的直线为轴,建立空间直线坐标系,则,由点为的中点,则,在平面中,取,设该平面的法向量,则,即,令,解得,故平面的一个法向量,在平面中,取,设该平面的法向量,答案第 11页,共 12页则,即,令,解得,故平面的一个法向量,则,故平面 BCD 与平面 ABD 的夹角的余弦值为.22(1)22143xy;(2)28849【分析】(1)根据两圆内切和外切列出圆心距与半径的关系,即可发现圆心 P 的轨迹满足椭圆的定义,进而可求出方程;(2)当直线 AB 的斜率不存在,或为 0 时,可直接由已知得出四边形 ADBG 面积;当直线 AB 的斜斜率存在且不为 0 时,设

    29、出直线 AB 的方程,与联立椭圆联立,通过韦达定理与弦长公式得出AB与直线 AB 的斜率的关系,再由ABDG,得出直线 DG 的斜率与直线 AB 的斜率的关系,设出直线 DG 的方程,同理得出DG与直线 AB 的斜率的关系,即可列出四边形 ADBG 面积的式子,再通过基本不等式的应用得出最小值.解:(1)设动圆 P 的半径为 R,圆心 P 的坐标为,x y,由题意可知:圆1C的圆心为11,0C,半径为72;圆2C的圆心为21,0C,半径为12,动圆 P 与圆1C内切,且与圆2C外切,127=21=+2PCRPCR,则1212+=4=2PCPCC C动圆 P 的圆心的轨迹 E 是以1C,2C为焦

    30、点的椭圆,设其方程为:222210 xyabab,其中24a,22c,2=2a,23b,即轨迹 E 的方程为:22143xy.答案第 12页,共 12页(2)当直线 AB 的斜率不存在,或为 0 时,四边形 ADBG 面积12S 长轴长通径长212262baa,当斜率存在且不为 0 时,设直线 AB 的方程为10yk xk,11,A x y,22,B xy,由22=1+=143y k xxy可得:22224384120kxk xk,2122843kxxk,21 2241243kx xk,22221211 1114ABkxxkxxx x,22222222121841214434343kkkkkkk ABDG,1DGkk,同理可得:2212134kDGk,ABDG,四边形 ADBG 面积22222222121121721112243344334kkkSABDGkkkk,则222222222721721288649433443342kkSkkkk 等号当且仅当224334kk时取,即1k 时,min28849S.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:福建省晋江市五校联考2022-2023高二上学期数学期中试卷+答案.pdf
    链接地址:https://www.163wenku.com/p-4079323.html
    副主任
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库