版《数字信号处理(英)》课件Chap-3--Discrete-Time-Fourier-Transform.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《版《数字信号处理(英)》课件Chap-3--Discrete-Time-Fourier-Transform.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字信号处理英 数字信号 处理 课件 Chap Discrete Time Fourier Transform
- 资源描述:
-
1、1l The Continuous-time Fourier Transform(CTFT)l The Discrete-time Fourier Transform(DTFT)l DTFT TheoremslThe Frequency Response of LTI DT SystemlPhase and Group DelayChap 3 Discrete-Time Fourier Transform 2Definition-The CTFT Xa(j)of a continuous-time signalxa(t)is given by j(j)()ed (3.1)taaXx tt Th
2、e CTFT often is referred to as the Fourier spectrum,or simply the spectrum of the CT signal3.1 Continuous-Time Fourier Transform3 Inverse Continuous-Time Fourier Transform j1()(j)ed (3.2)2taax tXDefinition-The Inverse CTFT of a Fourier transformXa(j)is given by The ICTFT often is referred to as the
3、Fourier integral.CTFT pair-CTFT ()(j)aax tXt 4 Magnitude spectrum and phase spectrum Magnitude spectrum-Phase spectrum-Polar formj()(j)|(j)|e,()arg(j)aaaaaXXX|Xa(j)|a()Total Energy E E x of a finite-energy CT complex signal221|()|d|(j)|d (3.9)2xaax ttXE Parsevals relation5 Energy Density Spectrum Sx
4、x()Definition-2()|(j)|xxaSX Energy E E x,r over a specified range of frequencies a b of the signal xa(t)is computed by,1()d2bax rxxSE6 Band-Limited CT Signals Ideal Band-limited signal has a spectrum that is zero outside a finite frequency a|b:(j),|(j)0,otherwise aabaXX An ideal band-limited signal
5、cannot be generated in practice Lowpass CT signal:0,|(j)(j),0|paapXX Bandwidth:p7 Band-Limited CT Signals Highpass CT signal:0,0|(j)(j),|paapXX Bandpass CT signal:0,0|,|(j)(j),|LHaaLHXX Bandwidth:H L8 3.2 Discrete-Time Fourier TransformDefinition-The DTFT X(e j)of a sequence xn is given by jj(e)e (3
6、.12)nnXx n In general,X(e j)is a complex function of the real variable and can be written asjjjreim(e)(e)j(e)(3.19)XXX9 Magnitude function and phase function Magnitude function:Phase function:Polar formjjj()j(e)|(e)|e (3.21)()arg(e)(3.22)XXX j|(e)|X()Likewise,j|(e)|Xand()are called the magnitude spe
7、ctrum and phase spectrum.10 Examples of DTFTExample 3.5 Find the DTFT of unit sample sequence n.Example 3.6 Find the DTFT of causal sequence xn=anun,|a|1.as|a e j|=|a|1jj(e)e=01nnnSolution:jjjj01(e)e=e1ennnnnXx naaSolution:11jj|(e)|(e)|XX()()/magnitude/Phase in radians The magnitude and phase functi
8、on of sequence 0.5nun.Examples of DTFT12 Characteristics of DTFT The DTFT X(e j)of a sequence xn is a continuous function of ;The DTFT X(e j)of a sequence xn is also a periodic function of with a period 2.j(2)jj(e)(e)e,knnXXx ni.e.for all integer values of k13 The Inverse DTFT jj1(e)ed (3.16)2nx nXD
9、efinition-The DTFT pairj(e)(3.17)x nX F F14 Commonly used DTFT pairs table 3.3SequenceDTFTn11unanun,|a|1 F F0jen2(2)kk 02(2)kk j1(1e)aj1(1 e)(2)kk 15 Basic Propertiesjjj()(e)|(e)|eXX jj()2|(e)|ekX The phase function()of DTFT cannot be uniquely specified for all values of.Principal value()16 Symmetry
10、 Relations(I)table 3.1Sequence the DTFT j(e)X x nj(e)Xxn*j(e)X*xnjj*j1cs2(e)(e)(e)XXXRe x njj*j1ca2(e)(e)(e)XXXjIm x njre(e)Xcs xnjimj(e)Xca xn17 Symmetry Relations(II)table 3.2Real Sequence the DTFT jjjreim(e)(e)j(e)XXX x nj*j(e)(e)XXjre(e)Xev xnjimj(e)Xod xnSymmetryrelationsjjrere(e)(e)XXjjimim(e)
11、(e)XX jj|(e)|(e)|XXjjarg(e)arg(e)XX 18 3.3 DTFT Theorems table 3.4 Theorem Sequence DTFT j(e)G g nj(e)H h njj(e)(e)GH g nh nLinearityj(e)GgnTime-reversalTime-shifting0jje(e)nG0g nnFrequency-shifting0j()(e)G 0je ng nConvolutionjj(e)(e)GH g nh nModulation+()1()()d2jjG eH e g n h nParsevals Relation+*1
12、 ()()d2jjng n h nG eHeDifferentiation-in frequencyjd(e)jdG ng n19 Example of DTFT theorems(I)Example 3.13 Determine the DTFT of yn.(1),|1ny nnu nSolution:Let ,|1nx nu nthen y nnx nx njj1(e)1eXandthereforejjDTFTj2d(e)e j=d(1e)Xnx n 20 Example of DTFT theorem(II)According to the linear theorem:jDTFTj2
13、jj2 e1 (1e)1e1 (1e)y nnx nx n 21 Example of DTFT theorem(IV)Example 3.11 Determine the DTFT V(e j)of vn.0101 1 1d v nd v npnpnSolution:Using time-shifting and linearity theorem of DTFTjjjj0101(e)e(e)ed VdVppthereforejj01j01e(e)eppVdd22 Example of DTFT theorem(V)ExampleLet X(ej)denote the DTFT of a l
14、ength-9 sequence xn given by.2,3,1,0,4,3,1,2,426x nn Evaluate the follow of X(ej)without computing transform itself.022()()()()()()()()|()|()|jjjjja X eb X ecX eddX edX ededd23 Example of DTFT theorem(VI)Solution:24 Total Energy E Ex of DT Signal Total Energy E Ex of a finite-energy DT complex signa
展开阅读全文
链接地址:https://www.163wenku.com/p-4073493.html