书签 分享 收藏 举报 版权申诉 / 63
上传文档赚钱

类型版《数字信号处理(英)》课件Chap-3--Discrete-Time-Fourier-Transform.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4073493
  • 上传时间:2022-11-08
  • 格式:PPT
  • 页数:63
  • 大小:2.06MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《版《数字信号处理(英)》课件Chap-3--Discrete-Time-Fourier-Transform.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数字信号处理英 数字信号 处理 课件 Chap Discrete Time Fourier Transform
    资源描述:

    1、1l The Continuous-time Fourier Transform(CTFT)l The Discrete-time Fourier Transform(DTFT)l DTFT TheoremslThe Frequency Response of LTI DT SystemlPhase and Group DelayChap 3 Discrete-Time Fourier Transform 2Definition-The CTFT Xa(j)of a continuous-time signalxa(t)is given by j(j)()ed (3.1)taaXx tt Th

    2、e CTFT often is referred to as the Fourier spectrum,or simply the spectrum of the CT signal3.1 Continuous-Time Fourier Transform3 Inverse Continuous-Time Fourier Transform j1()(j)ed (3.2)2taax tXDefinition-The Inverse CTFT of a Fourier transformXa(j)is given by The ICTFT often is referred to as the

    3、Fourier integral.CTFT pair-CTFT ()(j)aax tXt 4 Magnitude spectrum and phase spectrum Magnitude spectrum-Phase spectrum-Polar formj()(j)|(j)|e,()arg(j)aaaaaXXX|Xa(j)|a()Total Energy E E x of a finite-energy CT complex signal221|()|d|(j)|d (3.9)2xaax ttXE Parsevals relation5 Energy Density Spectrum Sx

    4、x()Definition-2()|(j)|xxaSX Energy E E x,r over a specified range of frequencies a b of the signal xa(t)is computed by,1()d2bax rxxSE6 Band-Limited CT Signals Ideal Band-limited signal has a spectrum that is zero outside a finite frequency a|b:(j),|(j)0,otherwise aabaXX An ideal band-limited signal

    5、cannot be generated in practice Lowpass CT signal:0,|(j)(j),0|paapXX Bandwidth:p7 Band-Limited CT Signals Highpass CT signal:0,0|(j)(j),|paapXX Bandpass CT signal:0,0|,|(j)(j),|LHaaLHXX Bandwidth:H L8 3.2 Discrete-Time Fourier TransformDefinition-The DTFT X(e j)of a sequence xn is given by jj(e)e (3

    6、.12)nnXx n In general,X(e j)is a complex function of the real variable and can be written asjjjreim(e)(e)j(e)(3.19)XXX9 Magnitude function and phase function Magnitude function:Phase function:Polar formjjj()j(e)|(e)|e (3.21)()arg(e)(3.22)XXX j|(e)|X()Likewise,j|(e)|Xand()are called the magnitude spe

    7、ctrum and phase spectrum.10 Examples of DTFTExample 3.5 Find the DTFT of unit sample sequence n.Example 3.6 Find the DTFT of causal sequence xn=anun,|a|1.as|a e j|=|a|1jj(e)e=01nnnSolution:jjjj01(e)e=e1ennnnnXx naaSolution:11jj|(e)|(e)|XX()()/magnitude/Phase in radians The magnitude and phase functi

    8、on of sequence 0.5nun.Examples of DTFT12 Characteristics of DTFT The DTFT X(e j)of a sequence xn is a continuous function of ;The DTFT X(e j)of a sequence xn is also a periodic function of with a period 2.j(2)jj(e)(e)e,knnXXx ni.e.for all integer values of k13 The Inverse DTFT jj1(e)ed (3.16)2nx nXD

    9、efinition-The DTFT pairj(e)(3.17)x nX F F14 Commonly used DTFT pairs table 3.3SequenceDTFTn11unanun,|a|1 F F0jen2(2)kk 02(2)kk j1(1e)aj1(1 e)(2)kk 15 Basic Propertiesjjj()(e)|(e)|eXX jj()2|(e)|ekX The phase function()of DTFT cannot be uniquely specified for all values of.Principal value()16 Symmetry

    10、 Relations(I)table 3.1Sequence the DTFT j(e)X x nj(e)Xxn*j(e)X*xnjj*j1cs2(e)(e)(e)XXXRe x njj*j1ca2(e)(e)(e)XXXjIm x njre(e)Xcs xnjimj(e)Xca xn17 Symmetry Relations(II)table 3.2Real Sequence the DTFT jjjreim(e)(e)j(e)XXX x nj*j(e)(e)XXjre(e)Xev xnjimj(e)Xod xnSymmetryrelationsjjrere(e)(e)XXjjimim(e)

    11、(e)XX jj|(e)|(e)|XXjjarg(e)arg(e)XX 18 3.3 DTFT Theorems table 3.4 Theorem Sequence DTFT j(e)G g nj(e)H h njj(e)(e)GH g nh nLinearityj(e)GgnTime-reversalTime-shifting0jje(e)nG0g nnFrequency-shifting0j()(e)G 0je ng nConvolutionjj(e)(e)GH g nh nModulation+()1()()d2jjG eH e g n h nParsevals Relation+*1

    12、 ()()d2jjng n h nG eHeDifferentiation-in frequencyjd(e)jdG ng n19 Example of DTFT theorems(I)Example 3.13 Determine the DTFT of yn.(1),|1ny nnu nSolution:Let ,|1nx nu nthen y nnx nx njj1(e)1eXandthereforejjDTFTj2d(e)e j=d(1e)Xnx n 20 Example of DTFT theorem(II)According to the linear theorem:jDTFTj2

    13、jj2 e1 (1e)1e1 (1e)y nnx nx n 21 Example of DTFT theorem(IV)Example 3.11 Determine the DTFT V(e j)of vn.0101 1 1d v nd v npnpnSolution:Using time-shifting and linearity theorem of DTFTjjjj0101(e)e(e)ed VdVppthereforejj01j01e(e)eppVdd22 Example of DTFT theorem(V)ExampleLet X(ej)denote the DTFT of a l

    14、ength-9 sequence xn given by.2,3,1,0,4,3,1,2,426x nn Evaluate the follow of X(ej)without computing transform itself.022()()()()()()()()|()|()|jjjjja X eb X ecX eddX edX ededd23 Example of DTFT theorem(VI)Solution:24 Total Energy E Ex of DT Signal Total Energy E Ex of a finite-energy DT complex signa

    15、l xn2j21|(e)|d2xnx nXE Definition of Energy Density Spectrum Sxx()j2()|(e)|xxSX The area under this curve in the range divided by 2 is the energy of the sequence25 Band-limited Discrete-Time signal Full-Band Signal Since the spectrum of a DT signal is a periodic functionof with a period 2,a full-ban

    16、d signal has a spectrumoccupying the frequency range.Ideal Band-limited signal has a spectrum that is zero outside a finite frequency 0 a b :jj0,0|,|,(e)(e),otherwise abXX 26 Band-Limited DT Signals An ideal band-limited signal cannot be generated in practice Lowpass DT signal:jj(e),0|(e)0,|ppXXBand

    17、width:p Highpass DT signal:jj0,0|(e)(e),|ppXXBandwidth:p27 Band-Limited DT Signals Bandpass DT signal:Bandwidth:H Ljj0,0|,|(e)(e),|LHLHXX28 3.4 DTFT Computation Using MATLAB Function:Freqz()To compute the values of the DTFT of a sequence,described as a rational function in the form:jjj01jj01ee(e)eeM

    18、MNNpppXddd Example:H=Freqz(num,den,w)29 Example of Using MATLABExample 3.14jj2j3j4jjj2j3j40.008 0.033e0.05e0.033e0.008e(e)1 2.37e2.7e1.6e0.41eXNum=0.008,0.033,0.05,0.033,0.008;Den=1,2.37,2.7,1.6,0.41;W=0:0.01*pi:pi;H=freqz(Num,Den,w);subplot(2,2,1);plot(w/pi,real(H);grid;subplot(2,2,2);plot(w/pi,ima

    19、g(H);grid;subplot(2,2,3);plot(w/pi,abs(H);gridsubplot(2,2,4);plot(w/pi,angle(H);grid;The phase spectrum has discontinuity of 2 at =0.72.32 3.5 The Unwrapped Phase Function Unwrapping the phase:Process the dis-continuity removal.c()Unwrapped phase functioncc0()()ddd with the constraintc(0)033 3.6 The

    20、 Frequency Response of LTI DT System Eigenfunction:e j n Let xn=ej n,LTI system with impulse response hn,the output of the LTI system isj()jj ee(e)(3.77)kn knkkky nh nx nh k x n kh kh kOr rewritten as jj(e)e (3.78)ny nH34 Property of Frequency Responsejj(e)e (3.79)nnHh n Frequency response H(e j):is

    21、 the DTFT of the impulse response hn;is a continuous function of ;is a periodic function of with a period 2;is a complex function of real variable .jjjjj()reim(e)(e)j(e)|(e)|eHHHH 35 Gain and Attenuationj10()20log|(e)|(dB)(3.81)GH Gain function:Attenuation(loss)function:()()AG H(ej)provides a freque

    22、ncy-domain description of the systemjjj(e)(e)(e)(3.82)YHX36 Frequency-Domain Characterization of the LTI DT Systemjjj(e)(e)(3.83)(e)YHXExample 3.15Input sequence xn=anun,|a|1,LTI system with impulse response:hn=bnun,|b|1.Find the output sequence yn.Solution:y nx nh njjj(e)(e)(e)YXHjj1(e)1eXajjjjj1(e

    23、)(e)(e)(1e)(1e)YXHabjj1(e)1eHbjj()()1e1eabababab11 nnnnababy na u nb u nu nababab0 nkn kka bu n38 Example of Frequency ResponseExample 3.16 Determine the frequency response of moving-average filter:1,01 (3.91)0,otherwise nMMh nSolution:j1jjj0j(1)/21 1 e1(e)e1 e1 sin(/2)e (3.92)sin(/2)MMnnMHMMMM39 Ma

    24、gnitude response and phase response curveH=freqz(h,1,w);40 Frequency Response of LTI DT Systems LTI FIR DT Systems:2112 *,Nk Ny nx nh nh k x nkNN21jjj(e)e(e)Nkk NYh kX21jj(e)e (3.87)Nkk NHh k4100=NMkkkkd y nkp x nkjjjj00e(e)e(e)NMkkkkkkdYpXjjj0jj0e(e)(e)(3.90)(e)eMkkkNkkkpYHXd LTI IIR DT Systems:Fre

    25、quency Response of LTI DT Systems42 The Concept of Filtering One application of an LTI DT system is to pass certain frequency components in an input sequence,without any distortion(if possible)and to block other frequency components.Such systems are called digital filters and are one of the main sub

    26、jects of discussion in this course.The filtering process is:jjj1(e)(e)ed 2ny nXH43 The Concept of Filtering44 The Concept of Filtering45 By appropriately choosing the values of magnitude function of the LTI digital filter at frequencies corresponding to the frequencies of the sinusoidal components o

    27、f the input,some of these sinusoidal sequences can be selectively heavily attenuated or filtered with respect to the others.jjj1(e)(e)ed2ny nXH The Concept of Filtering46 Lowpass digital filterj1,0|(e)|(3.95)0,|ccH Real coefficient LTI DT system characterized by a magnitude function:input sequence:1

    28、212 coscos,0 (3.108)aA We assume that in the frequency range:00|,cc the frequency response of the CT system has a constant magnitude and a linear phase:|(j)|(j)|aacHH d()()()()|dcaaacc ()()()(3.109)cpccgc the CTFT of input signal xa(t)is:1(j)(j)(j)2aacacXAA the output response ya(t)is:00|,cc ()()cos

    29、()agccpcy ta tt Because of the constraint imposed by Eq.(3.108),Xa(j)=0 outside the frequency range:With assuming|(j)|1acH the group delay g()is precisely the delay of the envelop a(t)of the input signal xa(t),whereas the phase delay p()is the delay of the carrier signal cos ct.61 Group delay and Phase delay of CT System62 Summaryl CTFT:Xa(j)=|Xa(j)|ej()l DTFT:X(e j)=|X(e j)|ej()l DTFT Theoremsl The Frequency Response H(e j)of LTI DT Systeml Phase Delay p()and Group Delay g()63 ExercisesPage 115:3.2 (a)(b);3.9Page 116:3.20(*);3.37;3.47

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:版《数字信号处理(英)》课件Chap-3--Discrete-Time-Fourier-Transform.ppt
    链接地址:https://www.163wenku.com/p-4073493.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库