2020年四川省攀枝花市高考数学一模试卷(文科).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020年四川省攀枝花市高考数学一模试卷(文科).docx》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 四川省 攀枝花市 高考 数学 试卷 文科 下载 _模拟试题_高考专区_数学_高中
- 资源描述:
-
1、 第 1 页(共 20 页) 2020 年四川省攀枝花市高考数学一模试卷(文科)年四川省攀枝花市高考数学一模试卷(文科) 一、选择题:本题共一、选择题:本题共 12 小题,每小题小题,每小题 5 分,共分,共 60 分在每小题给出的四个选项中,只有分在每小题给出的四个选项中,只有 一项是符合题目要求的一项是符合题目要求的 1 (5 分)已知集合 | (2)0Mx x x, 2N ,1,0,1,2,则(MN ) A0,1,2 B 2,1 C1 D 2,1,0,2 2 (5 分)已知复数z满足:(1)(i zi i为虚数单位) ,则| z等于( ) A 1 2 B 2 2 C2 D2 3 (5 分
2、)在等差数列 n a中, 68 1 1 2 aa,则数列 n a的前 7 项的和 7 (S ) A4 B7 C14 D28 4 (5 分)已知角的终边经过点(3, 4),则cos()( 2 ) A 4 5 B 3 5 C 3 5 D 4 5 5 (5 分)执行如图所示的程序框图,如果输入6n ,3m ,则输出的p等于( ) A120 B360 C840 D1008 6 (5 分)一个棱长为 2 的正方体被一个平面截去部分后,余下部分的三视图如图所示,则 截去部分与剩余部分体积的比为( ) 第 2 页(共 20 页) A1:3 B1:4 C1:5 D1:6 7 (5 分)函数 3cos1 ( )
3、 x f x x 的部分图象大致是( ) A B C D 8 (5 分)已知 1 2 3a , 2 log3b , 3 log2c ,则a,b,c的大小关系为( ) Aabc Bacb Cbac Dcba 9 (5 分)下列说法中正确的是( ) A若命题“pq”为假命题,则命题“pq”是真命题 B命题“ * xN , 32 xx”的否定是“ * 0 xN, 32 00 xx” C设a,bR,则“()0b ab”是“ 11 ab ”的充要条件 D命题“平面向量, a b满足| | |aba b,则, a b不共线”的否命题是真命题 10 (5 分)已知函数 ,0 ( ) 1 1,0 2 x x
4、f x xx ,若mn,( )( )f mf n,则nm的取值范围是( ) 第 3 页(共 20 页) A(1,2 B1,2) C(0,1 D0,1) 11 (5 分)关于函数( )cos|sin|f xxx的下述四个结论中,正确的是( ) A( )f x是奇函数 B( )f x的最大值为 2 C( )f x在,有 3 个零点 D( )f x在区间(0,) 4 单调递增 12 (5 分)已知函数( )()() xx f xaeex eex与 2 ( ) x g xe的图象恰有三个不同的公共点(其 中e为自然对数的底数) ,则实数a的取值范围是( ) A 1 (,1) 2 B 12 (,) 22
5、 C 2 (,1) 2 D(1, 2) 二、填空题:本题共二、填空题:本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分 13 (5 分)若平面单位向量, a b满足 3 () 2 ab b,则向量, a b的夹角为 14 (5 分)已知幂函数( ,) n ymxm nR的图象经过点(4,2),则mn 15 (5 分)正项等比数列 n a满足 13 5 4 aa,且 2 2a, 4 1 2 a, 3 a成等差数列,设 * 1( ) nnn ba anN ,则 1 2n bbb取得最小值时的n值为 16 (5 分) 已知函数( )f x对xR 满足(2)( )2f xf xf(1
6、) , 且( )0f x , 若(1 )yf x 的图象关于1x 对称,(0)1f,则(2019)(2020)ff 三、解答题:共三、解答题:共 70 分解答应写出文字说明、证明过程或演算步骤第分解答应写出文字说明、证明过程或演算步骤第 1721 题为必考题为必考 题,每个试题考生都必须作答第题,每个试题考生都必须作答第 22、23 题为选考题,考生根据要求作答 (一)必考题:题为选考题,考生根据要求作答 (一)必考题: 共共 60 分分 17(12 分) 数列 n a中,1 1 2 a , * 1 1 2( ) () 2 n nn aanN , 数列 n b满足 * 2() n nn ba
7、nN ()求证:数列 n b是等差数列,并求数列 n a的通项公式; ()设 2 log n n n c a ,求数列 2 2 nn c c 的前n项和 n T 18 ( 12 分 )ABC的 内 角A,B,C的 对 边 分 别 为a,b,c, 且 满 足 tan( sin2 cos)cos 2222 ACAC aba ()求B; ()若6b ,求 22 ac的最小值 19 (12 分)如图,在三棱锥PABC中,平面PAC 平面ABC,PAC为等边三角形, ABAC,D是BC的中点 第 4 页(共 20 页) ()证明:ACPD; ()若2ABAC,求D到平面PAB的距离 20 (12 分)已
8、知椭圆 22 22 :1(0) xy Cab ab 的一个焦点与抛物线 2 4 3yx的焦点重合, 且椭圆C的离心率为 3 2 ()求椭圆C的标准方程; ()直线l交椭圆C于A、B两点,线段AB的中点为(1, )Mt,直线m是线段AB的垂直 平分线,求证:直线m过定点,并求出该定点的坐标 21 (12 分)已知函数 1 ( )()f xxalnx aR x ()求曲线( )yf x在点 1 ( ,)e e 处的切线方程; () 若函数 2 ( )( )2g xxfxlnxax(其中( )fx是( )f x的导函数) 有两个极值点 1 x、 2 x, 且 12 xx,证明: 12 2 1 ( )
9、0 a g xx x (二)选考题:共(二)选考题:共 10 分请考生在第分请考生在第 22、23 题中任选一题作答如果多做,则按所做的题中任选一题作答如果多做,则按所做的 第一题记分第一题记分选修选修 4-4:坐标系与参数方程:坐标系与参数方程 22 (10 分)在平面直角坐标系中,曲线 1 C的参数方程为 cos (0 2sin xr r yr ,为参数) , 以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线 1 C经过点(2,) 6 P ,曲线 2 C的 极坐标方程为 2(2 cos2 )6 ()求曲线 1 C的极坐标方程; ()若 1 (A,), 2 (,) 2 B 是曲线 2
10、C上两点,求 22 11 |OAOB 的值 选修选修 4-5:不等式选讲:不等式选讲 23已知函数( ) |21|f xx ()解不等式( ) | 3f xx; 第 5 页(共 20 页) ()若对于x、yR,有 1 |31| 3 xy, 1 |21| 6 y ,求证: 7 ( ) 6 f x 第 6 页(共 20 页) 2020 年四川省攀枝花市高考数学一模试卷(文科)年四川省攀枝花市高考数学一模试卷(文科) 参考答案与试题解析参考答案与试题解析 一、选择题:本题共一、选择题:本题共 12 小题,每小题小题,每小题 5 分,共分,共 60 分在每小题给出的四个选项中,只有分在每小题给出的四个
11、选项中,只有 一项是符合题目要求的一项是符合题目要求的 1 (5 分)已知集合 | (2)0Mx x x, 2N ,1,0,1,2,则(MN ) A0,1,2 B 2,1 C1 D 2,1,0,2 【解答】解: |02Mxx, 2N ,1,0,1,2, 1MN 故选:C 2 (5 分)已知复数z满足:(1)(i zi i为虚数单位) ,则| z等于( ) A 1 2 B 2 2 C2 D2 【解答】解:(1)(i zi i为虚数单位) , (1)11 1(1)(1)22 iii zi iii , 则 22 112 |( )( ) 222 z 故选:B 3 (5 分)在等差数列 n a中, 68
12、 1 1 2 aa,则数列 n a的前 7 项的和 7 (S ) A4 B7 C14 D28 【解答】解:在等差数列 n a中, 68 1 1 2 aa, 11 1 5(7 )1 2 adad, 解得 14 32ada, 数列 n a的前 7 项的和: 7174 7 ()714 2 Saaa 故选:C 4 (5 分)已知角的终边经过点(3, 4),则cos()( 2 ) A 4 5 B 3 5 C 3 5 D 4 5 第 7 页(共 20 页) 【解答】解:角的终边经过点(3, 4), 可得 22 44 sin 5 3( 4) 则 4 cos()sin 25 故选:D 5 (5 分)执行如图所
13、示的程序框图,如果输入6n ,3m ,则输出的p等于( ) A120 B360 C840 D1008 【解答】解:模拟程序的运行,可得 第一次循环,1k ,6n ,3m ,4p ; 第二次循环,2k ,6n ,3m ,20p ; 第三次循环,3k ,6n ,3m ,120p ;结束循环 输出的p等于 120; 故选:A 6 (5 分)一个棱长为 2 的正方体被一个平面截去部分后,余下部分的三视图如图所示,则 截去部分与剩余部分体积的比为( ) 第 8 页(共 20 页) A1:3 B1:4 C1:5 D1:6 【解答】解:由题意可知:几何体被平面ABCD平面分为上下两部分, 设:正方体的棱长为
14、 2,上部棱柱的体积为: 1 2 1 22 2 ; 下部为:22226 截去部分与剩余部分体积的比为: 1 3 故选:A 7 (5 分)函数 3cos1 ( ) x f x x 的部分图象大致是( ) A B C D 【解答】解:因为 3cos()1 ()( ) x fxf x x ,所以函数( )f x为奇函数,图象关于原点对 第 9 页(共 20 页) 称,排除D, 又当x小于 0 趋近于 0 时,( )0f x ,故排除B, 又 3cos()12 ()0f ,据此排除C 故选:A 8 (5 分)已知 1 2 3a , 2 log3b , 3 log2c ,则a,b,c的大小关系为( )
15、Aabc Bacb Cbac Dcba 【解答】解: 1 0 2 331, 222 1 2321 2 logloglog, 33 1 23 2 loglog, abc 故选:A 9 (5 分)下列说法中正确的是( ) A若命题“pq”为假命题,则命题“pq”是真命题 B命题“ * xN , 32 xx”的否定是“ * 0 xN, 32 00 xx” C设a,bR,则“()0b ab”是“ 11 ab ”的充要条件 D命题“平面向量, a b满足| | |aba b,则, a b不共线”的否命题是真命题 【解答】解:对于A,命题“pq”为假命题时,p、q至少有一个为假命题,所以命题 “pq”不一
16、定是真命题,A错误; 对于B,命题“ * xN , 32 xx”的否定是“ * 0 xN, 32 00 xx” ,所以B错误; 对于C,a,bR,当()0b a b时,令1a , 1 2 b ,则12 ,所以 11 ab 不成立, 不是充要条件,C错误; 对于D, “平面向量, a b满足| | |aba b,则, a b不共线”的否命题是 若| |aba b,则向量, a b共线; 由| cosa bab知,| |aba b,一定有| | |aba b,cos1 ,所以向量, a b 共线,D正确 故选:D 第 10 页(共 20 页) 10 (5 分)已知函数 ,0 ( ) 1 1,0 2
17、 x x f x xx ,若mn,( )( )f mf n,则nm的取值范围是( ) A(1,2 B1,2) C(0,1 D0,1) 【解答】解:根据图象( )0f x 有两个交点,( )(0f x ,1, mn,( )( )f mf n, ( )1f x 时,0m ,令1x ,1x ,故1n ,1nm, ( )0f x 时,2m ,令0x ,1x ,故0n ,根据题意0n ,所以2nm 所以1nm,2) 故选:B 11 (5 分)关于函数( )cos|sin|f xxx的下述四个结论中,正确的是( ) A( )f x是奇函数 B( )f x的最大值为 2 C( )f x在,有 3 个零点 D
18、( )f x在区间(0,) 4 单调递增 【解答】解:对于A,( )f x的定义域为R,且 ()cos|sin()|cos|sin|()fxxxxxfx, 所以函数( )f x是偶函数,A错误; 对于B,当0x,时,cos| cosxx,|sin| sinxx, 则( )cossin2sin() 4 f xxxx ; 第 11 页(共 20 页) 当(x,2 时,( )cossin2cos() 4 f xxxx , 且( )f x在0,)是周期为2的函数, 又( )f x是定义域R上的偶函数,所以( )f x的最大值为2,B错误; 对于C,画出函数( )f x在,内的图象,如图所示; 则( )
19、f x在,内的零点有 2 个,C错误; 对于D,由( )f x在0,内的图象知,( )f x在(0,) 4 内是单调增函数,D正确 故选:D 12 (5 分)已知函数( )()() xx f xaeex eex与 2 ( ) x g xe的图象恰有三个不同的公共点(其 中e为自然对数的底数) ,则实数a的取值范围是( ) A 1 (,1) 2 B 12 (,) 22 C 2 (,1) 2 D(1, 2) 【解答】解:函数( )()() xx f xaeex eex与 2 ( ) x g xe的图象恰有三个不同的公共点, 即( )( )f xg x有 3 个根, 即 2 ()() xxx aee
展开阅读全文