圆锥曲线知识点汇总课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《圆锥曲线知识点汇总课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 知识点 汇总 课件
- 资源描述:
-
1、圆锥曲线与方程知识点汇总2.1 2.1 椭圆椭圆1、椭圆的定义、椭圆的定义:1F2FM 平面内到平面内到两两个定点个定点F1、F2的距离之的距离之和和等于等于常数常数(大于(大于|F1F2|)的点的轨迹叫做的点的轨迹叫做椭圆椭圆。这两个定点叫做椭圆的这两个定点叫做椭圆的焦点焦点,两焦点间的距离,两焦点间的距离叫做椭圆的叫做椭圆的焦距焦距。cFF221为椭圆时,022 ca2a2aMFMFMFMF2 21 1椭圆形成演示椭圆形成演示椭圆定义椭圆定义.gsp满足几个条件的动点的轨迹叫做椭圆?满足几个条件的动点的轨迹叫做椭圆?v(1)平面上平面上-这是大前提这是大前提v(2)动点动点 M 到两个定点
2、到两个定点 F1、F2 的距离之和的距离之和是常数是常数 2a v(3)常数常数 2a 要大于焦距要大于焦距 2c1222MFMFac42222+=1 0 xyabab2222+=1 0 xyabba分母哪个大,焦点就在哪个轴上分母哪个大,焦点就在哪个轴上平面内到两个定点平面内到两个定点F1,F2的距离的和等的距离的和等于常数(大于于常数(大于F1F2)的点的轨迹)的点的轨迹12-,0,0,FcFc120,-0,,FcFc标准方程标准方程相相 同同 点点焦点位置的判断焦点位置的判断不不 同同 点点图图 形形焦点坐标焦点坐标定定 义义a、b、c 的关系的关系xyF1 1F2 2POxyF1 1F
3、2 2POa2-c2=b2求椭圆的标准方程求椭圆的标准方程(1)首先要)首先要判断判断类型,类型,(2)用)用待定系数法待定系数法求求ba,a2=b2+c2典例分析典例分析例例1椭圆的两个焦点的坐标分别是(椭圆的两个焦点的坐标分别是(4,0)(4,0),椭圆上一点),椭圆上一点P到两焦点距离之和等于到两焦点距离之和等于10,求椭圆的标准方程。求椭圆的标准方程。12yoFFMx.解:解:椭圆的焦点在椭圆的焦点在x轴上轴上设它的标准方程为设它的标准方程为:2a=10,2c=8 a=5,c=4 b2=a2c2=5242=9所求椭圆的标准方程为所求椭圆的标准方程为)0(12222babyax19252
4、2yx例例2 2.已已知知椭椭圆圆的的两两个个焦焦点点坐坐标标分分别别为为(-2 2,0 0),5 53 3(2 2,0 0)并并且且经经过过点点(,-),求求它它的的标标准准方方程程.2 22 22 22 22 22 2解解:因因为为椭椭圆圆的的焦焦点点在在x x轴轴上上,所所以以设设它它的的标标准准方方程程为为x xy y+=1 1(a a b b 0 0).a ab b2 22 22 22 22 22 22 2由由 椭椭 圆圆 的的 定定 义义 知知5 53 35 53 32 2 a a=+2 2+-+-2 2+-=2 21 1 0 02 22 22 22 2所所 以以 a a=1 1
5、0 0.又又 因因 为为 c c=2 2,所所 以以 b b=a a-c c=1 1 0 0-4 4=6 6.22222222因因此此,所所求求椭椭圆圆的的标标准准方方程程为为xyxy+=1.+=1.1061061 111 11变变式式引引申申:求求焦焦点点在在y y轴轴上上,且且经经过过点点A(,)A(,)、B(0,-)B(0,-)的的3 323 32椭椭圆圆的的标标准准方方程程.2 22 22 22 22 22 2y yx x解解:设设 所所 求求 椭椭 圆圆 的的 方方 程程 为为+=1 1,a ab b1 11 11 1将将 A A(,),B B(0 0,-)代代 入入 得得:3 33
6、 32 22 22 21 11 13 33 3+=1 12 22 2a ab b,2 21 1-2 2=1 12 2a a1 12 2a a=,4 4解解 得得:1 12 2b b=.5 5y yx x故故 所所 求求 椭椭 圆圆 的的 标标 准准 方方 程程 为为+=1 1.1 11 14 45 5?思考一个问题思考一个问题:把把“焦点在焦点在y轴上轴上”这句话去掉,怎么办?这句话去掉,怎么办?定义法定义法:如果所给几何条件正好符合某一特定的曲线(圆,椭圆等)的定义,则可直接利用定义写出动点的轨迹方程.待定系数法待定系数法:所求曲线方程的类型已知,则可以设出所求曲线的方程,然后根据条件求出系
7、数.用待定系数法求椭圆方程时,要“先定型,再定量”.求曲线方程的方法:求曲线方程的方法:标准方程标准方程图象图象范围范围对称性对称性顶点坐标顶点坐标焦点坐标焦点坐标半轴长半轴长离心率离心率 a a、b b、c c的关的关系系22221(0)xyababceac2=a2-b222221(0)xyabba-axa,-byb-bxb,-aya对称轴为对称轴为x轴、轴、y轴;对称中心为原点轴;对称中心为原点(a,0)、(-a,0)、(0,b)、(0,-b)(b,0)、(-b,0)、(0,a)、(0,-a)(c,0)、(-c,0)(0,c)、(0,-c)长轴长为长轴长为2a,短轴长为短轴长为2b.焦距为
8、焦距为2c(0e1)2、椭圆的简单几何性质、椭圆的简单几何性质:xyF1 1F2 2POxyF1 1F2 2PO 椭圆离心率的取值范围?离心率变椭圆离心率的取值范围?离心率变 化对椭圆的扁平程度有什么影响?化对椭圆的扁平程度有什么影响?e(0(0,1).1).e越接近于越接近于0,椭圆越圆;,椭圆越圆;e越接越接近于近于1 1,椭圆越扁,椭圆越扁.2.2 2.2 双曲线双曲线 两个定点两个定点F1、F2双曲线的双曲线的焦点焦点;|F1F2|=2c 焦距焦距.(1)2a0;思考:思考:(1)若)若2a=2c,则轨迹是什么?则轨迹是什么?(2)若)若2a2c,则轨迹是什么?则轨迹是什么?说明说明(
9、3)若)若2a=0,则轨迹是什么?则轨迹是什么?|MF1|-|MF2|=2a(1)两条射线两条射线(2)不表示任何轨迹不表示任何轨迹1、双曲线的定义、双曲线的定义:看看 前的系数,哪一个为正,则在哪一个轴上前的系数,哪一个为正,则在哪一个轴上平面内平面内与两个定点与两个定点F1,F2的距离的差的距离的差的绝对值的绝对值等于常数等于常数(小于(小于F1F2)的点的轨迹叫做的点的轨迹叫做双曲线双曲线.12-,0,0,FcFc120,-0,,FcFc标准方程标准方程相相 同同 点点焦点位置的判断焦点位置的判断不不 同同 点点图图 形形焦点坐标焦点坐标定定 义义a、b、c 的关系的关系22221(0,
10、0)xyabab22221(0,0)yxababc2=a2+b222,yxF2F1MxOyOMF2F1xy17xyoax或ax ay ay或)0,(a),0(axaby xbay ace)(222bac其中关于关于坐标坐标轴和轴和原点原点都对都对称称性性质质双曲线双曲线)0,0(12222babyax)0,0(12222babxay范围范围对称对称 性性 顶点顶点 渐近渐近 线线离心离心 率率图象图象2、双曲线的简单几何性质、双曲线的简单几何性质:18例例1 求双曲线求双曲线 9y2-16x2=144的实半轴长和虚半轴长、的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程焦点坐标、离心率、渐近
展开阅读全文