书签 分享 收藏 举报 版权申诉 / 46
上传文档赚钱

类型1.2 集合间的基本关系ppt课件(共46张PPT)-2022新人教A版(2019)《高中数学》必修第一册.pptx

  • 上传人(卖家):Q123
  • 文档编号:4066049
  • 上传时间:2022-11-08
  • 格式:PPTX
  • 页数:46
  • 大小:845.16KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《1.2 集合间的基本关系ppt课件(共46张PPT)-2022新人教A版(2019)《高中数学》必修第一册.pptx》由用户(Q123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高中数学 1.2 集合 基本 关系 ppt 课件 46 _2022 新人 2019 必修 一册 下载 _必修第一册_人教A版(2019)_数学_高中
    资源描述:

    1、1.21.2集合间的基本关系课标阐释思维脉络1.理解子集、真子集的概念及集合相等的含义.(数学抽象)2.掌握子集、真子集及集合相等的应用,会判断集合间的基本关系.(逻辑推理)3.在具体情境中了解空集的含义并会应用.(数学抽象)激趣诱思知识点拨银河系是地球和太阳所属的星系.因其主体部分投影在天空上的亮带被我国称为银河而得名.银河系约有2 000多亿颗恒星.银河系侧看像一个中心略鼓的大圆盘,整个圆盘的直径约为10万光年,鼓起处为银心,是恒星密集区,故望去白茫茫的一片.银河系俯视像一个巨大的旋涡,这个旋涡由四个旋臂组成.而我们的地球所属的太阳系位于其中一个旋臂(猎户座臂),距离银河系中心约2.3万光

    2、年.如果我们把银河系所包含的所有行星和恒星所构成的集合叫集合A,把太阳系包含的行星和恒星所构成的集合叫集合B.那么集合A与集合B有怎样的关系?激趣诱思知识点拨知识点一、子集与真子集1.Venn图用平面上封闭曲线的内部代表集合,这种图称为Venn图.名师点析 对Venn图的理解:(1)表示集合的Venn图的边界是封闭曲线,它可以是圆、椭圆、矩形,也可以是其他封闭曲线.(2)用Venn图表示集合的优点是能够呈现清晰的视觉形象,即能够直观地表示集合之间的关系,缺点是集合元素的公共特征不明显.激趣诱思知识点拨2.子集与真子集 激趣诱思知识点拨激趣诱思知识点拨名师点析 1.对子集的理解:(1)“A是B的

    3、子集”的含义:集合A中的任意一个元素都是集合B中的元素,即由任意xA,能推出xB.(2)若AB,则A有以下三种情况:A是空集;A是由B的部分元素组成的集合;A是由B的全部元素组成的集合.故不能简单地认为“若AB,则A是由B的部分元素组成的集合”.激趣诱思知识点拨2.对真子集的理解:(1)真子集的概念也可以叙述为:若集合AB,存在元素xB,且xA,则称集合A是集合B的真子集.(2)集合A是集合B的真子集,需要满足以下两个条件:a.集合A是集合B的子集;b.存在元素xB,且xA.所以,如果集合A是集合B的真子集,那么集合A一定是集合B的子集,反之不成立.(3)任何集合都一定有子集,一个集合的真子集

    4、的个数比子集的个数少1.激趣诱思知识点拨微思考观察下面实例:A=1,2,3,B=1,2,3,4,5;设A为新华中学高一(2)班全体女生组成的集合,B为这个班全体学生组成的集合;设A=x|x是两条边相等的三角形,B=x|x是等腰三角形;A=x|x是长方形,B=x|x是平行四边形;A=x|x3,B=x|x2;A=x|(x+1)(x+2)=0,B=-1,-2.激趣诱思知识点拨(1)上面的每个例子中的两个集合,集合A中的任何一个元素都是集合B中的元素吗?提示:是.称集合A是集合B的子集.(2)反过来,上述各对集合中,集合B中的元素都是集合A中的元素吗?提示:两对集合中,集合B中的元素也都是集合A中的元

    5、素(集合相等);这四对集合中,集合B中有些元素不是集合A的元素.称集合A是集合B的真子集.激趣诱思知识点拨微练习(1)已知集合P=-1,0,1,2,Q=-1,0,1,则()A.PQ B.PQ C.QP D.QP(2)已知集合A=x|-1x2,B=x|0 x1,则()A.BAB.ABC.BAD.A8,且x4答案:B激趣诱思知识点拨知识点四、子集与真子集的性质由子集、真子集和空集的概念可得:(1)空集是任何集合的子集,A;(2)任何一个集合是它自身的子集,即AA;(3)空集只有一个子集,即它自身;(4)对于集合A,B,C,由AB,BC可得AC;(5)对于集合A,B,C,由AB,BC可得AC.激趣诱

    6、思知识点拨微思考与、a与a之间有什么区别?提示:(1)与的区别:表示元素与集合之间的关系,因此,有 Q,Q等;表示集合与集合之间的关系,因此,有QR,R等.(2)a与a的区别:一般地,a表示一个对象,而a表示由一个元素组成的集合(常称单元素集),a是集合a的一个元素.因此,有22,不能写成2=2.探究一探究二探究三探究四素养形成当堂检测集合的子集、真子集问题集合的子集、真子集问题例1(1)(2020安徽合肥高一检测)集合A=x|0 x3,xN的真子集的个数是()A.16B.8C.7D.4(2)(2020浙江台州高一检测)已知集合A=x|x2+x=0,xR,则集合A=.若集合B满足0BA,则集合

    7、B=.(3)已知集合A=(x,y)|x+y=2,x,yN,试写出A的所有子集.探究一探究二探究三探究四素养形成当堂检测(1)解析:由已知得,A=0,1,2,此集合的真子集为,0,1,2,0,1,0,2,1,2,共7个.答案:C(2)解析:因为解方程x2+x=0,得x=-1或x=0,所以集合A=x|x2+x=0,xR=-1,0,因为集合B满足0BA,所以集合B=-1,0.答案:-1,0-1,0(3)解:因为A=(x,y)|x+y=2,x,yN,所以A=(0,2),(1,1),(2,0).所以A的子集有,(0,2),(1,1),(2,0),(0,2),(1,1),(0,2),(2,0),(1,1)

    8、,(2,0),(0,2),(1,1),(2,0).探究一探究二探究三探究四素养形成当堂检测反思感悟 1.求集合子集、真子集步骤判断根据子集、真子集的概念判断出集合中含有元素的可能情况分类根据集合中元素的多少进行分类列举采用列举法逐一写出每种情况的子集探究一探究二探究三探究四素养形成当堂检测2.求元素个数有限的集合的子集两个关注点(1)要注意两个特殊的子集:和自身;(2)按集合中含有元素的个数由少到多,分类一一写出,保证不重不漏.变式训练1(1)若1,2,3A1,2,3,4,5,则满足条件的集合A的个数为()A.2B.3C.4D.5(2)设含有4个元素的集合的全部子集数为S,其中由2个元素组成的

    9、子集数为T,则 的值为.(3)设集合A=xZ|-1x+16,求A的非空真子集的个数.探究一探究二探究三探究四素养形成当堂检测(1)解析:集合1,2,3是集合A的真子集,同时集合A又是集合1,2,3,4,5的子集,所以集合A只能取集合1,2,3,4,1,2,3,5和1,2,3,4,5.答案:B(3)解:化简集合A得A=xZ|-2x5.xZ,A=-2,-1,0,1,2,3,4,5,即A中含有8个元素,A的非空真子集数为28-2=254(个).探究一探究二探究三探究四素养形成当堂检测集合之间关系的判断集合之间关系的判断例2已知集合A=x|1x6,B=x|x+34,则A与B的关系是()A.ABB.A=

    10、BC.BAD.BA解析:由题意知,B=x|x1,将A,B表示在数轴上,如图所示.由数轴可以看出,集合A中元素全部在集合B中,且B中至少存在一个元素不属于集合A,所以AB.答案:A反思感悟 判断两个集合之间的关系,一般是依据子集等相关定义分析.对于两个连续数集,则可将集合用数轴表示出来,数形结合判断,需注意端点值的取舍.探究一探究二探究三探究四素养形成当堂检测A.ABB.A=BC.ABD.BA解析:A=-2,3,B=3,BA.答案:D探究一探究二探究三探究四素养形成当堂检测答案:AB 探究一探究二探究三探究四素养形成当堂检测反思感悟 将集合中元素的特征性质进行等价变形,从而发现各性质之间的关系,

    11、最后得到集合之间的关系.探究一探究二探究三探究四素养形成当堂检测A.A=BCB.AB=CC.ABCD.BCA探究一探究二探究三探究四素养形成当堂检测答案:B 探究一探究二探究三探究四素养形成当堂检测集合相等关系的应用集合相等关系的应用例4已知集合A=2,x,y,B=2x,2,y2,且A=B,求实数x,y的值.分析根据A=B列出关于x,y的方程组进行求解.探究一探究二探究三探究四素养形成当堂检测探究一探究二探究三探究四素养形成当堂检测反思感悟 1.判断两个集合相等可以看两个集合中的元素是否相同,有两种方法:(1)将两个集合的元素一一列举出来,进行比较;(2)看集合中的代表元素是否一致且代表元素满

    12、足的条件是否一致,若均一致,则两个集合相等.2.两个集合相等的问题一般转化为解方程(组),但要注意最后需检验,看是否满足集合中元素的互异性.3.找好问题的切入点是解决集合相等问题的关键.探究一探究二探究三探究四素养形成当堂检测延伸探究 若将本例已知条件改为“集合A=x,xy,x-y,集合B=0,|x|,y,且A=B”,求实数x,y的值.解:0B,A=B,0A.又由集合中元素的互异性,可知|x|0,y0,x0,xy0,故x-y=0,即x=y.此时A=x,x2,0,B=0,|x|,x,x2=|x|,解得x=1.当x=1时,x2=1,与集合中元素的互异性矛盾,x=-1,即x=y=-1.探究一探究二探

    13、究三探究四素养形成当堂检测由集合间的关系求参数的范围由集合间的关系求参数的范围例5已知集合A=x|-5x2,B=x|2a-3xa-2.(1)若a=-1,试判断集合A,B之间是否存在子集关系;(2)若AB,求实数a的取值范围.分析(1)令a=-1,写出集合B,分析两个集合中元素之间的关系,判断其子集关系;(2)根据集合B是否为空集进行分类讨论,然后把两集合在数轴上标出,根据子集关系确定端点值之间的大小关系,进而列出参数a所满足的条件.探究一探究二探究三探究四素养形成当堂检测解:(1)若a=-1,则B=x|-5x-3.如图在数轴上标出集合A,B.由图可知,BA.(2)由已知AB.当B=时,2a-3

    14、a-2,解得a1.显然成立.当B时,2a-3a-2,解得a1.由已知AB,如图在数轴上表示出两个集合,探究一探究二探究三探究四素养形成当堂检测反思感悟 由集合间的关系求参数的范围问题中的两点注意事项(1)求解此类问题通常是借助于数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,同时还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心圈表示.(2)涉及“AB”或“AB,且B”的问题,一定要分A=和A两种情况进行讨论,其中A=的情况容易被忽略,应引起足够的重视.探究一探究二探究三探究四素养形成当堂检测延伸探究(1)例5(2)中,是否存在实数a,使得AB?若存在,求

    15、出实数a的取值范围;若不存在,试说明理由.(2)若集合A=x|x2,B=x|2a-3xa-2,且AB,求实数a的取值范围.解:(1)不存在.理由如下,因为A=x|-5x2,所以若AB,则B一定不是空集.探究一探究二探究三探究四素养形成当堂检测(2)当B=时,2a-3a-2,解得a1.显然成立.当B时,2a-3a-2,解得a1.由已知AB,如图在数轴上表示出两个集合,由图可知2a-32或a-2-5,综上,实数a的取值范围为a|a-3,或a1.探究一探究二探究三探究四素养形成当堂检测分类讨论思想与数形结合思想在解决集合含参问题中的应用分类讨论思想与数形结合思想在解决集合含参问题中的应用对于两个集合

    16、A与B,已知A或B中含有待确定的参数(字母),若AB或A=B,则集合B中的元素与集合A中的元素具有“包含关系”,解决这类问题时常采用分类讨论和数形结合的方法.(1)分类讨论是指:AB在未指明集合A非空时,应分A=和A两种情况来讨论.因为集合中的元素是无序的,由AB或A=B得到两集合中的元素对应相等的情况可能有多种,因此需要分类讨论.(2)数形结合是指对A这种情况,在确定参数时,需要借助数轴来完成,将两个集合在数轴上画出来,分清实心点与空心圈,确定两个集合之间的包含关系,列不等式(组)确定参数范围.探究一探究二探究三探究四素养形成当堂检测特别提醒 此类问题易错点有三个:忽略A=的情况,没有分类讨

    17、论;在数轴上画两个集合时,没有分清实心点与空心圈;没有弄清包含关系,以致没有正确地列出不等式或不等式组.(3)解决集合中含参问题时,最后结果要注意验证.验证是指:分类讨论求得的参数的值,还需要代入原集合中看是否满足集合中元素的互异性.所求参数能否取到端点值需要单独验证.探究一探究二探究三探究四素养形成当堂检测典例 已知集合A=x|1ax2,B=x|x|1,是否存在实数a,使得AB.若存在,求出实数a的取值范围.分析对参数a进行讨论,写出集合A,B,借助于数轴,求出a的取值范围.探究一探究二探究三探究四素养形成当堂检测探究一探究二探究三探究四素养形成当堂检测1.集合x,y的子集个数是()A.1B

    18、.2C.3D.4解析:(方法1)集合x,y的子集有,x,y,x,y,共有4个.(方法2)集合内有2个元素,子集个数为22=4.答案:D探究一探究二探究三探究四素养形成当堂检测2.下列正确表示集合M=-1,0,1和N=x|x2+x=0关系的Venn图是()解析:由N=-1,0,知NM,故选B.答案:B探究一探究二探究三探究四素养形成当堂检测3.(2020山东高一检测)设a,bR,P=1,a,Q=-1,-b,若P=Q,则a+b=.所以a+b=-2.答案:-2探究一探究二探究三探究四素养形成当堂检测4.已知集合P=x|-2x3,Q=x|x-a0.若PQ,求实数a的取值范围.解:Q=x|x-a0=x|xa,PQ,将集合P,Q在数轴上表示出来,如图.由图可得a-2.故实数a的取值范围是a|a-2.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:1.2 集合间的基本关系ppt课件(共46张PPT)-2022新人教A版(2019)《高中数学》必修第一册.pptx
    链接地址:https://www.163wenku.com/p-4066049.html
    Q123
         内容提供者     

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库