考研常微分方程知识点总结课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《考研常微分方程知识点总结课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 微分方程 知识点 总结 课件
- 资源描述:
-
1、常微分方程常微分方程偏微分方程偏微分方程含未知函数及其导数的方程叫做含未知函数及其导数的方程叫做微分方程微分方程.方程中所含方程中所含未知函数导数的最高阶数未知函数导数的最高阶数叫做微分方程叫做微分方程(本章内容本章内容)0),()(nyyyxF),()1()(nnyyyxfy(n 阶显式微分方程)微分方程的基本概念微分方程的基本概念一般地一般地,n 阶常微分方程的形式是阶常微分方程的形式是的的阶阶.分类分类或或机动 目录 上页 下页 返回 结束,00ts200ddtts引例24.022ddxy 使方程成为恒等式的函数.通解通解 解中所含独立的任意常数的个数与方程)1(00)1(0000)(,
2、)(,)(nnyxyyxyyxy 确定通解中任意常数的条件.n 阶方程的初始条件初始条件(或初值条件或初值条件):的阶数相同.特解特解xxy2dd21xy引例引例1Cxy22122.0CtCts通解:tts202.0212 xy特解:微分方程的解解 不含任意常数的解,定解条件定解条件 其图形称为积分曲线积分曲线.机动 目录 上页 下页 返回 结束。微分方程的积分曲线族的一族曲线,称它们为又是平面内族函数;微分方程的通解是一的积分曲线。称这条曲线为微分方程又是平面的一条曲线,个函数;微分方程的特解是一),()(21ncccxyyxyy行的切线。处有平的每一条曲线在点线族中注:微分方程的积分曲中,
3、积分曲线族为例;中,积分曲线为例),(1110022yxcxyxy转化 可分离变量微分方程 机动 目录 上页 下页 返回 结束 第二节解分离变量方程解分离变量方程 xxfyygd)(d)(可分离变量方程可分离变量方程 )()(dd21yfxfxy0 )(d )(11xNxxMyyNyMd)()(22 第七章 分离变量方程的解法分离变量方程的解法:xxfyygd)(d)(设 y(x)是方程的解,xxfxxxgd)(d)()(两边积分,得 yygd)(xxfd)(CxFyG)()(则有恒等式)(yG)(xF当G(y)与F(x)可微且 G(y)g(y)0 时,说明由确定的隐函数 y(x)是的解.则有
4、称为方程的隐式通解隐式通解,或通积分通积分.同样,当F(x)=f(x)0 时,上述过程可逆,由确定的隐函数 x(y)也是的解.机动 目录 上页 下页 返回 结束 形如)(ddxyxy的方程叫做齐次方程齐次方程.令,xyu,xuy 则代入原方程得,ddddxuxuxy)(dduxuxuxxuuud)(d两边积分,得xxuuud)(d积分后再用xy代替 u,便得原方程的通解通解.解法解法:分离变量:机动 目录 上页 下页 返回 结束 第三节 齐次方程 内容小结内容小结1.微分方程的概念微分方程的概念微分方程;定解条件;2.可分离变量方程的求解方法可分离变量方程的求解方法:说明说明:通解不一定是方程
5、的全部解.0)(yyx有解后者是通解,但不包含前一个解.例如,方程分离变量后积分;根据定解条件定常数.解;阶;通解;特解 y=x 及 y=C 机动 目录 上页 下页 返回 结束 3.齐次方程的求解方法齐次方程的求解方法:)(ddxyxy令,xyu(1)找出事物的共性及可贯穿于全过程的规律列方程.常用的方法常用的方法:1)根据几何关系列方程(如:P263,5(2)2)根据物理规律列方程(如:例4,例 5)3)根据微量分析平衡关系列方程(如:例6)(2)利用反映事物个性的特殊状态确定定解条件.(3)求通解,并根据定解条件确定特解.3.解微分方程应用题的方法和步骤解微分方程应用题的方法和步骤机动 目
6、录 上页 下页 返回 结束 一、一阶线性微分方程一、一阶线性微分方程一阶线性微分方程标准形式:)()(ddxQyxPxy若 Q(x)0,0)(ddyxPxy若 Q(x)0,称为非齐次方程非齐次方程.1.解齐次方程分离变量xxPyyd)(d两边积分得CxxPylnd)(ln故通解为xxPeCyd)(称为齐次方程齐次方程;机动 目录 上页 下页 返回 结束 是两个不同的概念与上节的“齐次方程”本节的“齐次方程”函数均为一次函数方程中未知函数及其导注:所谓线性,即是对应齐次方程通解xxPeCyd)(齐次方程通解齐次方程通解非齐次方程特解非齐次方程特解xxPCed)(2.解非齐次方程)()(ddxQy
7、xPxy用常数变易法常数变易法:,)()(d)(xxPexuxy则xxPeud)()(xPxxPeud)()(xQ故原方程的通解xexQexxPxxPd)(d)(d)(CxexQeyxxPxxPd)(d)(d)(y即即作变换xxPeuxPd)()(xxPexQxud)()(ddCxexQuxxPd)(d)(两端积分得机动 目录 上页 下页 返回 结束 二、伯努利二、伯努利(Bernoulli)方程方程 伯努利方程伯努利方程的标准形式:)1,0()()(ddnyxQyxPxynny以)()(dd1xQyxPxyynn令,1 nyzxyynxzndd)1(dd则)()1()()1(ddxQnzxP
8、nxz求出此方程通解后,除方程两边,得换回原变量即得伯努利方程伯努利方程的通解.解法解法:(线性方程线性方程)伯努利 目录 上页 下页 返回 结束 内容小结内容小结1.一阶线性方程)()(ddxQyxPxy方法1 先解齐次方程,再用常数变易法.方法2 用通解公式CxexQeyxxPxxPd)(d)(d)(,1 nyu令化为线性方程求解.2.伯努利方程nyxQyxPxy)()(dd)1,0(n机动 目录 上页 下页 返回 结束 思考与练习思考与练习判别下列方程类型:xyyxyxyxdddd)1()ln(lndd)2(xyyxyx0d2d)()3(3yxxxy0d)(d2)4(3yxyxyyxxy
9、xydd)2ln()5(提示提示:xxyyydd1 可分离 变量方程xyxyxylndd齐次方程221dd2xyxxy线性方程221dd2yxyyx线性方程2ln2ddyxxyxxy伯努利方程机动 目录 上页 下页 返回 结束),(yxfy 可降阶高阶微分方程 机动 目录 上页 下页 返回 结束 第五节一、一、型的微分方程型的微分方程 二、二、型的微分方程型的微分方程)()(xfyn),(yyfy 三、三、型的微分方程型的微分方程 第七章 解法:降阶一、一、)()(xfyn令,)1(nyz)(ddnyxz则因此1d)(Cxxfz即1)1(d)(Cxxfyn同理可得2)2(d Cxyn1d)(C
10、xxfxd xxfd)(依次通过 n 次积分,可得含 n 个任意常数的通解.,)(xf21CxC型的微分方程型的微分方程 机动 目录 上页 下页 返回 结束 n次次),(yxfy 型的微分方程型的微分方程 设,)(xpy,py 则原方程化为一阶方程),(pxfp 设其通解为),(1Cxp则得),(1Cxy再一次积分,得原方程的通解21d),(CxCxy二、二、机动 目录 上页 下页 返回 结束 三、三、),(yyfy 型的微分方程型的微分方程 令),(ypy xpydd 则xyypddddyppdd故方程化为),(ddpyfypp设其通解为),(1Cyp即得),(1Cyy分离变量后积分,得原方
11、程的通解21),(dCxCyy机动 目录 上页 下页 返回 结束 内容小结内容小结可降阶微分方程的解法可降阶微分方程的解法 降阶法降阶法)(.1)(xfyn逐次积分),(.2yxfy 令,)(xpy xpydd 则),(.3yyfy 令,)(ypy yppydd 则机动 目录 上页 下页 返回 结束 思考与练习思考与练习1.方程)(yfy 如何代换求解?答答:令)(xpy 或)(ypy 一般说,用前者方便些.均可.有时用后者方便.例如,2)(yey 2.解二阶可降阶微分方程初值问题需注意哪些问题?答答:(1)一般情况,边解边定常数计算简便.(2)遇到开平方时,要根据题意确定正负号.例例6例例7
12、机动 目录 上页 下页 返回 结束 n 阶线性微分方程阶线性微分方程的一般形式为方程的共性共性 为二阶线性微分方程.例例1例例2,)()()(xfyxqyxpy 可归结为同一形式同一形式:)()()()(1)1(1)(xfyxayxayxaynnnn时,称为非齐次方程;0)(xf时,称为齐次方程.复习复习:一阶线性方程)()(xQyxPy通解:xexQexxPxxPd)(d)(d)(xxPeCyd)(非齐次方程特解非齐次方程特解齐次方程通解齐次方程通解Yy0)(xf机动 目录 上页 下页 返回 结束 )(11yCxP )(11yCxQ0证毕二、线性齐次方程解的结构二、线性齐次方程解的结构)()
13、,(21xyxy若函数是二阶线性齐次方程0)()(yxQyxPy的两个解,也是该方程的解.证证:)()(2211xyCxyCy将代入方程左边,得 11 yC22yC 22yC22yC)()(1111yxQyxPyC)()(2222yxQyxPyC(叠加原理叠加原理)()(2211xyCxyCy则),(21为任意常数CC定理定理1.机动 目录 上页 下页 返回 结束 是不是所给二阶方程的通解?是不是所给二阶方程的通解?)()(2211xyCxyCy问题:问题:说明说明:不一定是所给二阶方程的通解.例如例如,)(1xy是某二阶齐次方程的解,)(2)(12xyxy也是齐次方程的解)()2()()(1
14、212211xyCCxyCxyC并不是通解!并不是通解!但是但是)()(2211xyCxyCy则为解决通解的判别问题为解决通解的判别问题,下面引入函数的下面引入函数的线性相关线性相关与与 线性无关线性无关概念概念.机动 目录 上页 下页 返回 结束 定义定义:)(,),(),(21xyxyxyn设是定义在区间 I 上的 n 个函数,21nkkk使得Ixxykxykxyknn,0)()()(2211则称这 n个函数在 I 上线性相关线性相关,否则称为线性无关线性无关.例如例如,,sin,cos,122xx在(,)上都有0sincos122xx故它们在任何区间 I 上都线性相关线性相关;又如,,1
15、2xx若在某区间 I 上,02321xkxkk则根据二次多项式至多只有两个零点,321,kkk必需全为 0,可见2,1xx故在任何区间 I 上都 线性无关线性无关.若存在不全为不全为 0 的常数机动 目录 上页 下页 返回 结束 两个函数在区间 I 上线性相关与线性无关的充要条件充要条件:)(),(21xyxy线性相关存在不全为 0 的21,kk使0)()(2211xykxyk1221)()(kkxyxy(无妨设)01k)(),(21xyxy线性无关)()(21xyxy常数思考思考:)(),(21xyxy若中有一个恒为 0,则)(),(21xyxy必线性相关相关0)()()()(2121xyx
16、yxyxy(证明略)21,yy可微函数线性无关机动 目录 上页 下页 返回 结束 定理定理 2.)(),(21xyxy若是二阶线性齐次方程的两个线性无关特解,则)()(2211xyCxyCy数)是该方程的通解.例如例如,方程0 yy有特解,cos1xy,sin2xy 且常数,故方程的通解为xCxCysincos21(自证)推论推论.nyyy,21若是 n 阶齐次方程 0)()()(1)1(1)(yxayxayxaynnnn的 n 个线性无关解,则方程的通解为)(11为任意常数knnCyCyCyxytan21y为任意常21,(CC机动 目录 上页 下页 返回 结束 三、线性非齐次方程解的结构三、
17、线性非齐次方程解的结构)(*xy设是二阶非齐次方程的一个特解特解,)(*)(xyxYyY(x)是相应齐次齐次方程的通解通解,定理定理 3.)()()(xfyxQyxPy 则是非齐次方程的通解非齐次方程的通解.证证:将)(*)(xyxYy代入方程左端,得)*(yY)*()(yYxP)*)(*)(*(yxQyxPy)()(YxQYxPY)(0)(xfxf)*()(yYxQ复习 目录 上页 下页 返回 结束)(*)(xyxYy故是非齐次方程的解,又Y 中含有两个独立任意常数,例如例如,方程xyy 有特解xy*xCxCYsincos21对应齐次方程0 yy有通解因此该方程的通解为xxCxCysinco
18、s21证毕因而 也是通解.机动 目录 上页 下页 返回 结束 定理定理 4.),2,1()(nkxyk设分别是方程的特解,是方程),2,1()()()(nkxfyxQyxPyk nkkyy1则)()()(1xfyxQyxPynkk 的特解.(非齐次方程之解的叠加原理非齐次方程之解的叠加原理)定理3,定理4 均可推广到 n 阶线性非齐次方程.机动 目录 上页 下页 返回 结束 定理定理 5.)(,),(),(21xyxyxyn设是对应齐次方程的 n 个线性)(*)()()(2211xyxyCxyCxyCynn无关特解,给定 n 阶非齐次线性方程)()()()1(1)(xfyxayxaynnn)(
19、)(xyxY)(*xy是非齐次方程的特解,则非齐次方程的通解为齐次方程通解齐次方程通解非齐次方程特解非齐次方程特解机动 目录 上页 下页 返回 结束*四、常数变易法四、常数变易法复习:常数变易法:)()(xfyxpy对应齐次方程的通解:)(1xyCy xxpexyd)(1)(设非齐次方程的解为)(1xyy 代入原方程确定).(xu对二阶非齐次方程)()()(xfyxQyxPy 情形情形1.已知对应齐次方程通解:)()(2211xyCxyCy设的解为)()(21xyxyy)(1xv)(2xv)(),(21待定xvxv由于有两个待定函数,所以要建立两个方程:)(xu机动 目录 上页 下页 返回 结
20、束 2211vyvyy2211vyvy,21vvy 中不含为使令02211vyvy于是22112211vyvyvyvyy 将以上结果代入方程:2211vyvy1111)(vyQyPy)()(2222xfvyQyPy 得)(2211xfvyvy故,的系数行列式02121yyyyW21,yy是对应齐次方程的解,21线性无关因yyP10 目录 上页 下页 返回 结束 fyWvfyWv12211,1积分得:)(),(222111xgCvxgCv代入 即得非齐次方程的通解:)()(22112211xgyxgyyCyCy于是得 说明说明:将的解设为)()(21xyxyy)(1xv)(2xv只有一个必须满足
21、的条件即方程,因此必需再附加一 个条件,方程的引入是为了简化计算.机动 目录 上页 下页 返回 结束 情形情形2.).(1xy仅知的齐次方程的一个非零特解,)()(1xyxuy 令代入 化简得 uyPyuy)2(111uyQyPy)(111 fuz令fzyPyzy)2(111设其通解为)()(2xzxZCz积分得)()(21xuxUCCu(一阶线性方程)由此得原方程的通解:)()()()()(11211xyxuxyxUCxyCy代入 目录 上页 下页 返回 结束 常系数常系数 机动机动 目录目录 上页上页 下页下页 返回返回 结束结束 第七节第七节齐次线性微分方程齐次线性微分方程 基本思路基本
22、思路:求解常系数线性齐次微分方程求解常系数线性齐次微分方程 求特征方程求特征方程(代数方程代数方程)之根之根转化转化 第七章第七章 二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程:),(0为常数qpyqypy xrey 和它的导数只差常数因子和它的导数只差常数因子,代入得代入得0)(2xre qprr02qrpr称称为微分方程的为微分方程的特征方程特征方程,1.当当042qp时时,有有两个相异实根两个相异实根,21r,r方程有两个线性无关的特解方程有两个线性无关的特解:,11xrey,22xrey 因此方程的因此方程的通解通解为为xrxreCeCy2121(r 为待定常数为待定常数),x
展开阅读全文