《二次函数》总复习教学课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《二次函数》总复习教学课件.pptx》由用户(云出其山)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次函数 二次 函数 复习 教学 课件 下载 _九年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、1、二次函数的定义、二次函数的定义2、二次函数的图像及性质、二次函数的图像及性质3、求抛物线解析式的三种方法、求抛物线解析式的三种方法4、a,b,c及相关符号的确定及相关符号的确定5、抛物线的平移、抛物线的平移6、二次函数与一元二次方程的关系、二次函数与一元二次方程的关系7、二次函数的综合运用、二次函数的综合运用1、二次函数的定义 定义:y=ax bx c(a、b、c 是常数,a 0)定义要点:a 0 最高次数为2 代数式一定是整式 练习:1、y=-x,y=2x-2/x,y=100-5x,y=3x-2x+5,其中是二次函数的有_个。2、当、当m =_时时,函数函数y=(m+1)x -2x+1
2、是二次函数?是二次函数?2、二次函数的图像及性质抛物线抛物线顶点坐标顶点坐标对称轴对称轴位置位置开口方向开口方向增减性增减性最值最值y=axy=ax2 2+bx+c+bx+c(a0)y=axy=ax2 2+bx+c+bx+c(a0,开口向上开口向上a0开口向下开口向下a0交点在交点在x轴下方轴下方c0与与x轴有一个交点轴有一个交点b2-4ac=0与与x轴无交点轴无交点b2-4ac0 xy、二次函数、二次函数y=axy=ax2 2+bx+c(a+bx+c(a0)0)的图象如图的图象如图 所示,则所示,则a a、b b、c c的符号为()的符号为()A A、a0,c0 Ba0,c0 B、a0,c0
3、a0,c0 C C、a0,b0 Da0,b0 D、a0,b0,c0a0,b0,c0,b0,c=0 Ba0,b0,c=0 B、a0,c=0a0,c=0 C C、a0,b0,c0 Da0,b0,c0,b0,b0,b=0,c0,a0,b=0,c0,0 B0 B、a0,c0,a0,c0,b=0,c0,b=0,c0 D0 D、a0,b=0,c0,a0,b=0,c0,0 0 BACooo练习:练习:熟练掌握熟练掌握a,b,c,与抛物线图象的关系,与抛物线图象的关系(c:上正、下负):上正、下负)(a与与b:左同、右异:左同、右异)c c4 4、抛物线、抛物线y=axy=ax2 2+bx+c(a+bx+c(
4、a0)0)的图象经过原点和的图象经过原点和 二、三、四象限,判断二、三、四象限,判断a a、b b、c c的符号情况:的符号情况:a a 0,b0,b 0,c0,c 0.0.xyo=6、二次函数、二次函数y=ax2+bx+c中,如果中,如果a0,b0,c5、抛物线的平移练习练习二次函数二次函数y=2x2的图象向的图象向 平移平移 个单位可得个单位可得到到y=2x2-3的图象;的图象;二次函数二次函数y=2x2的图象向的图象向 平移平移 个单位可得到个单位可得到y=2(x-3)2的图象。的图象。二次函数二次函数y=2x2的图象先向的图象先向 平移平移 个单位,个单位,再向再向 平移平移 个单位可
5、得到函数个单位可得到函数y=2(x+1)2+2的的图象。图象。下下3右右3左左1上上2引申:引申:y=2(x+3)2-4 y=2(x+1)2+2练习:练习:(3)由二次函数)由二次函数y=x2的图象经过如何平移可以的图象经过如何平移可以得到函数得到函数y=x2-5x+6的图象的图象.y=x2-5x+6 41)25(2 xy=x241)25(2 xy6 二次函数与一元二次方程的关系 一元二次方程根的情况与一元二次方程根的情况与b-4ac的关系的关系 我们知道我们知道:代数式代数式b-4ac对于方程的根起着关键对于方程的根起着关键的作用的作用.w二次函数二次函数y=axy=axbxbxc c的图象
6、和的图象和x x轴交点的横坐标,轴交点的横坐标,便是对应的一元二次方程便是对应的一元二次方程axaxbxbxc=0c=0的解。的解。w二次函数二次函数y=axy=ax2 2+bx+c+bx+c的图象和的图象和x x轴交点有三种情况轴交点有三种情况:w(1)(1)有两个交点有两个交点w(2)(2)有一个交点有一个交点w(3)(3)没有交点没有交点二次函数与一元二次方程b2 4ac 0b2 4ac=0b2 4ac 0若抛物线若抛物线y=ax2+bx+c与与x轴有交点轴有交点,则则b2 4ac0判别式:判别式:b b2 2-4ac-4ac二次函数二次函数y=axy=ax2 2+bx+c+bx+c(a
7、0a0)图象图象一元二次方程一元二次方程axax2 2+bx+c=0+bx+c=0(a0a0)的根)的根x xy yO O与与x x轴有两个不轴有两个不同的交点同的交点(x x1 1,0 0)(x x2 2,0 0)有两个不相等的有两个不相等的解解x=xx=x1 1,x=xx=x2 2b b2 2-4ac-4ac0 0 x xy yO O与与x x轴有唯一个轴有唯一个交点交点)0,2(ab有两个相等的解有两个相等的解x1=x2=ab2b b2 2-4ac=0-4ac=0 xyO与与x x轴没有轴没有交点交点没有实数根没有实数根b b2 2-4ac-4ac0 0练习:练习:1 1、如果关于、如果
8、关于x x的一元二次方程的一元二次方程 x x2 2-2x+m-2x+m=0=0有两个相等的实有两个相等的实数根数根,则则m=m=,此时抛物线此时抛物线 y=xy=x2 2-2x+m-2x+m与与x x轴有轴有 个交点个交点.2 2、已知抛物线、已知抛物线 y=xy=x2 28x+c8x+c的顶点在的顶点在 x x轴上轴上,则则c=c=.1 11 116 3 3、一元二次方程、一元二次方程 3x3x2 2+x-10=0+x-10=0的两个根是的两个根是x x1 1=-2,x=-2,x2 2=5/3,=5/3,那么二次函数那么二次函数y=3xy=3x2 2+x-10+x-10与与x x轴的交点坐
展开阅读全文