高等数学第六版课件第八章第八节空间直线及其方程.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高等数学第六版课件第八章第八节空间直线及其方程.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 第六 课件 第八 八节 空间 直线 及其 方程
- 资源描述:
-
1、xyzo1 2 定义定义 空间直线可看成两平面的交线空间直线可看成两平面的交线0:11111 DzCyBxA 0:22222 DzCyBxA 0022221111DzCyBxADzCyBxA空间直线的一般方程空间直线的一般方程L一、空间直线的一般方程一、空间直线的一般方程xyzo方向向量的定义:方向向量的定义:如果一非零向量平行于一条如果一非零向量平行于一条已知直线,这个向量称为这条直已知直线,这个向量称为这条直线的线的方向向量方向向量sL0M M,LM ),(zyxMsMM0/二、空间直线的对称式方程与参数方程二、空间直线的对称式方程与参数方程,),(0000LzyxM 设设pzznyymx
2、x000 直线的对称式方程直线的对称式方程,pnms ,0000zzyyxxMM 当当 时,直线可理解为时,直线可理解为0 m pzznyyxx000 00yyxx0 nm时,时,直线可理解为直线可理解为 当当 ptzzntyymtxx000直线的参数方程直线的参数方程tpzznyymxx 000令令直线的一组直线的一组方向数方向数方向向量的余弦称为直线方向向量的余弦称为直线的的方向余弦方向余弦.例例1 1 用对称式方程及参数方程表示直线用对称式方程及参数方程表示直线.043201 zyxzyx解解在直线上任取一点在直线上任取一点),(000zyx取取10 x,063020000 zyzy解得
3、解得2,000 zy因所求直线与两平面的法向量都垂直因所求直线与两平面的法向量都垂直取取21nns ,3,1,4 对称式方程对称式方程,321041 zyx参数方程参数方程.3241 tztytx点坐标点坐标),2,0,1(解解所以交点为所以交点为),0,3,0(B取取BAs ,4,0,2 所求直线方程所求直线方程.440322 zyx定义定义两直线的方向向量的夹角称之两直线的方向向量的夹角称之.(锐角)(锐角)两直线的夹角公式两直线的夹角公式三、两直线的夹角三、两直线的夹角则两直线夹角则两直线夹角满足满足21,LL设直线设直线的方向向量分别为的方向向量分别为),(,),(22221111pn
4、mspnms 22222221212121212121|),cos(pnmpnmppnnmmLL 两直线的位置关系:两直线的位置关系:21)1(LL ,0212121 ppnnmm21)2(LL/,212121ppnnmm 直线直线:1L直线直线:2L,0,4,11 s,1,0,02 s,021 ss,21ss 例如例如,.21LL 即即例例3.3.求以下两直线的夹角求以下两直线的夹角解解:直线直线直线直线13411:1 zyxL 0202:2zxyxL的方向向量为的方向向量为1L的方向向量为的方向向量为2L 1,2,2 )1,4,1(1 s2010112kjis 二直线夹角二直线夹角 的余弦
5、为的余弦为 cos 22 从而从而4 )1(1)2()4(21 2221)4(1 222)1()2(2 解解设所求直线的方向向量为设所求直线的方向向量为,pnms 根据题意知根据题意知,1ns,2ns 取取21nns ,1,3,4 .153243 zyx所求直线的方程所求直线的方程解解0)3()1(2)2(3 zyxM先作一过点先作一过点 且与已知直线垂直且与已知直线垂直的平面的平面 M再求已知直线与该平面的交点再求已知直线与该平面的交点N N,令令tzyx 12131.1213 tztytx代入平面方程得代入平面方程得 ,73 t交点交点)73,713,72(NMN取所求直线的方向向量为取所
展开阅读全文