高等代数知识点总结课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高等代数知识点总结课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等 代数 知识点 总结 课件
- 资源描述:
-
1、高等代数知识点总结 基本概念基本概念:次数:最基本的概念和工具整除:多项式之间最基本的关系带余除法:最基本的算法,判断整除.最大公因式:描述多项式之间关系的复杂程度互素:多项式之间关系最简单的情形既约多项式:最基本的多项式根:最重要的概念和工具一元多项式一元多项式(AT)*=(A*)T基础解系:解空间的基底在实数域上,每个次数大于1的多项式f都有如下的标准分解对于n阶矩阵A,下列条件等价对A做一次列变换=用相应的初等矩阵右乘以A对任意b,Ax=b总有解,s线性表示当且仅当有矩阵C使得(1,.既约多项式:最基本的多项式它们在k+1个点的函数值相等,这里k是它们次数的最大者.r(A*)=1,若r(
2、A)=n1,r线性表示,且表法唯一(kA)T=k AT 重要结论:重要结论:带余除法定理对于任意多项式f(x)和非零多项式g(x),有唯一的q(x)和r(x)使得f(x)=g(x)q(x)+r(x),r(x)=0或degr(x)degg(x).最大公因式的存在和表示定理 任意两个不全为0的多项式都有最大公因式,且对于任意的最大公因式d(x)都有u(x)和v(x)使得d(x)=f(x)u(x)+g(x)v(x)互素f(x)和g(x)互素有u(x)和v(x)使得f(x)u(x)+g(x)v(x)=1.因式分解唯一定理 次数大于1的多项式都可分解成有限个既约多项式之积,且不计因子次序和常数因子倍时,
3、分解唯一.标准分解定理 每个次数大于1的多项式f都有如下的标准分解其中a是非零常数,p1,pt,是互不相同的首一既约多项式,n1,nt是正整数.进一步,a,p1,pt,n1,nt由f唯一确定.11tnntfapp 重因式 f无重因式当且仅当f与其导式互素.代数学基本定理:下列陈述等价,1.复数域上次数1的多项式总有根2.复数域上的n次多项式恰有n个根3.复数域上的既约多项式恰为一次式4.复数域上次数1的多项式可分解成一次式之积.5.实数域上的次数1的既约多项式只有无实根的二次式6.实数域上次数1的多项式可分解成一次式和二次式之积 实数域上的标准分解定理 在实数域上,每个次数大于1的多项式f都有
4、如下的标准分解其中a是f的常数项,x1,xt 是f全不互不相同的根,p1,pt是互异、首一、无实根的二次式.复数域上的标准分解定理 在复数域上,每个次数大于1的多项式f都有如下的标准分解其中a是f的常数项,x1,xt 是f全部互不相同的根,n1,nt分别是这些根的重数.11()()tnntfa xxxx1111()()stmnmnstfa xxxxpp 多项式作为函数:两个多项式相等(即对应系数相同)它们作为函数相等(即在每点的函数值相等)它们在k+1个点的函数值相等,这里k是它们次数的最大者.设f(x)anxn+.+a1x+a0,若f(x)在n+1个点的函数值为0,则f(x)恒等于0.Eis
5、enstein判别法:设 是整系数多项式,若有素数p使得 则f(x)是有理数域上的既约多项式.有理根:有理根的分母整除首项系数,分子整除常有理根的分母整除首项系数,分子整除常数项数项10()nnf xa xa xa2100,|,.,|nnp app ap aal 重要结论重要结论 命题1.8.1 若多项式的值全为0,则该多项式必为0.命题1.8.2 每个n次多项式f均可唯一地表示成齐次多项式之和 ,fn0,且其中fi是0或i次齐次多项式,0in,fi称为f的i次齐次分量.l 基本概念基本概念:次数、齐次分量、字典序、首项、对称多项式多元多项式多元多项式01nffff对称多项式基本定理 每个对称
6、多项式,都可唯一地表示成初等对称多项式的多项式.运算及其关系运算及其关系转置转置取逆取逆伴随伴随行列式行列式秩数秩数加加法法(A+B)T=AT+BTr(A+B)r(A)+r(B)数数乘乘(kA)T=k AT(kA)1=k 1A 1(kA)*=kn 1A*|kA|=kn|A|r(kA)=r(A)(k0)乘乘 法法(AB)T=BT AT(AB)1=B 1 A 1(AB)*=B*A*|AB|=|A|B|r(A)+r(B)-nr(AB)r(A),r(B)转转置置(AT)T=A(AT)1=(A 1)T(AT)*=(A*)T|AT|=|A|r(AT)=r(A)取取逆逆(A 1)1=A(A 1)*(A*)1
7、|A 1|=|A|1伴伴随随(A*)*=|A|n 2A*|A*|=|A|n 1 n,若r(A)=n r(A*)=1,若r(A)=n-1 0,若r(A)n-1其其它它A-1=|A|-1A*AA*=A*A=|A|E当当A可逆时,可逆时,A*|A|A 1定义定义性质性质若P,Q可逆,则r(A)=r(PA)=r(AQ)=r(PAQ)转置转置取逆取逆伴随伴随加法(A+B)T=AT+BT数乘(kA)T=k AT(kA)1=k 1A 1(kA)*=kn 1A*乘法(AB)T=BT AT(AB)1=B 1 A 1(AB)*=B*A*转置(AT)T=A(AT)1=(A 1)T(AT)*=(A*)T取逆(A 1)
8、1=A(A 1)*(A*)1伴随(A*)*=|A|n 2A*其它A-1=|A|-1A*AA*=A*A=|A|I当当A可逆时,可逆时,A*|A|A 1行列式行列式秩数秩数加法r(A+B)r(A)+r(B)数乘|kA|=kn|A|r(kA)=r(A)(k0)乘法|AB|=|A|B|r(A)+r(B)-nr(AB)r(A),r(B)转置|AT|=|A|r(AT)=r(A)取逆|A 1|=|A|1伴随|A*|=|A|n 1 n,若若r(A)=n r(A*)=1,若若r(A)=n 1 0,若若r(A)n 1 其它定义定义性质性质若P,Q可逆,则r(A)=r(PA)=r(AQ)=r(PAQ)性质公式备注转
9、置不变性|AT|=|A|行列地位平等反交换性|.|=|.|换法变换交错性|.|=0齐性|.k.|=k|.|倍法变换统称线性加性|.+.|=|.|+|.|倍加不变性|.+k.|=|.|消法变换按第k行第k列展开|aij|=ak1Ak1+aknAkn =a1kA1k+ankAnkaj1Ak1+ajnAkn=a1jA1k+anjAnk=jk|aij|Laplace定理分块三角矩阵的行列式Cauchy-Binet 公式Vandermonde行列式定义 性质;11111|kkkAAjjkkiiiiAjjjj式代余式111-|-mmUViimiiUVii式式11111|kkkAAjjkkiiiiAjjjj
10、式代余式Laplace定理(按第i1,.,ik行展开)0*|*0AAABBB0*(1)|*0mnAAABBB;分块三角形行列式111-|-mmUViimiiUVii式式Cauchy-Binet公式公式 设U是mn矩阵,V是nm矩阵,mn,则1222212111111111()0,.,j nnnjiinnnnnxxxVxxxxxxxxVxx 互不相同初等变换初等变换行变换行变换列变换列变换换法变换换法变换倍法变换倍法变换消法变换消法变换101101 1111c1111c对单位矩阵做一次初等变换对单位矩阵做一次初等变换对对A A做一次行变换做一次行变换 =用相应的初等矩阵左乘以用相应的初等矩阵左乘
展开阅读全文