高分子物理-高分子的力学性能课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高分子物理-高分子的力学性能课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高分子 物理 力学性能 课件
- 资源描述:
-
1、 引引 言言 高聚物作为材料使用时,总是要求高聚物具有必高聚物作为材料使用时,总是要求高聚物具有必要的力学性能,可以说,对于其大部分应用而言,要的力学性能,可以说,对于其大部分应用而言,力力学性能比高聚物的其他物理性能显得更为重要。学性能比高聚物的其他物理性能显得更为重要。引引 言言 随着高分子材料的大量应用,人们迫切需要随着高分子材料的大量应用,人们迫切需要了解了解和掌握聚合物的力学性质的一般规律和特点及其与结和掌握聚合物的力学性质的一般规律和特点及其与结构之间的关系构之间的关系,以恰当选择所需要的高分子材料,正,以恰当选择所需要的高分子材料,正确地控制加工的条件以获得所需的力学性能,并合理
2、确地控制加工的条件以获得所需的力学性能,并合理使用。使用。引引 言言 高分子材料具有所有已知材料中高分子材料具有所有已知材料中可变性范围最宽可变性范围最宽的力学性质的力学性质,包括从液体、软橡胶态到刚性固体。然,包括从液体、软橡胶态到刚性固体。然而,与金属材料相比,而,与金属材料相比,高分子材料对温度和时间的依高分子材料对温度和时间的依赖型要强烈得多赖型要强烈得多,表现为高分子材料的粘弹性。高分,表现为高分子材料的粘弹性。高分子材料的这种力学行为显得复杂而有趣,为不同的应子材料的这种力学行为显得复杂而有趣,为不同的应用提供了广阔的选择余地。用提供了广阔的选择余地。1.玻璃态和结晶态聚合物的力学
3、性质玻璃态和结晶态聚合物的力学性质 2.高弹态聚合物的力学性质高弹态聚合物的力学性质 3.聚合物的力学松弛粘弹性聚合物的力学松弛粘弹性 7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 一、一、描述力学性质的基本物理量描述力学性质的基本物理量 1.应力与应变应力与应变 (1)应力:)应力:单位面积上的附加内力,其值与单位面单位面积上的附加内力,其值与单位面积上所受的外力相等。积上所受的外力相等。(2)应变:)应变:当材料受到外力时,其几何形状和尺寸当材料受到外力时,其几何形状和尺寸将发生变化,这种变化称为应变。将发生变化,这种变化称为应变。7.1 玻璃态与结晶态聚合物的力学
4、性质玻璃态与结晶态聚合物的力学性质根据材料受力的方式,将各向同性材料分为三类:根据材料受力的方式,将各向同性材料分为三类:a.拉伸应力和拉伸应变拉伸应力和拉伸应变 b.剪切应力和剪切应变剪切应力和剪切应变 c.围压力围压力和压缩应变和压缩应变 7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 2.弹性模量弹性模量 对于理想的弹性固体,应力与应变关系服从虎克定对于理想的弹性固体,应力与应变关系服从虎克定律:律:弹性模量弹性模量=应力应力/应变应变 上述三种类型的弹性模量相应地为:上述三种类型的弹性模量相应地为:(1)杨氏模量:杨氏模量:E=/(2)剪切模量:剪切模量:G=s/
5、(3)体积模量:体积模量:B=PV0/V 7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 3.机械强度机械强度 机械强度是材料力学性能的重要指标,它是指材机械强度是材料力学性能的重要指标,它是指材料抵抗外力破坏的能力。料抵抗外力破坏的能力。机械强度的测试是参照国际机械强度的测试是参照国际标准和本国标准进行。标准和本国标准进行。7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 二、二、几种常用力学性能的指标几种常用力学性能的指标 1.拉伸强度拉伸强度 拉伸强度是在规定的试验温度、湿度和试验速度拉伸强度是在规定的试验温度、湿度和试验速度下,在标准试样上沿轴
6、向施加拉伸载荷,直到试样被下,在标准试样上沿轴向施加拉伸载荷,直到试样被拉断为止。拉断为止。7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 弯曲强度是在规定试验条件下,对标准试样施力。弯曲强度是在规定试验条件下,对标准试样施力。静弯曲力矩直到试样折断为止静弯曲力矩直到试样折断为止。2.弯曲强度(挠曲强度)弯曲强度(挠曲强度)7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 冲击强度是衡量材料冲击强度是衡量材料韧性韧性的一种强度指标,表征的一种强度指标,表征材料抵抗冲击载荷破坏的能力。通
7、常定义为试样受冲材料抵抗冲击载荷破坏的能力。通常定义为试样受冲击载荷而折断时单位载面积所吸收的能量。击载荷而折断时单位载面积所吸收的能量。3.冲击强度冲击强度 7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 硬度是衡量材料表面抵抗机械压力的能力的一种硬度是衡量材料表面抵抗机械压力的能力的一种指标。常见的硬度有指标。常见的硬度有布氏、洛氏、和邵氏布氏、洛氏、和邵氏等名称,通等名称,通常布氏硬度最为常见。常布氏硬度最为常见。4.硬度硬度 三、三、屈服现象屈服现象 1.应力与应变曲线应力与应变曲线 图图79 玻
8、璃态和结晶态高聚物的应力玻璃态和结晶态高聚物的应力-应变曲线应变曲线7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 (1)B点以前是弹性部分,点以前是弹性部分,应力与应变成正比应力与应变成正比,去,去除应力,材料可恢复原样,不产生永久形变,由直线除应力,材料可恢复原样,不产生永久形变,由直线的斜率可求出材料的弹性模量。的斜率可求出材料的弹性模量。7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 (2)B点以后,材料呈现塑性行为,去除应力,材点以后,材料呈现塑性行为,去除应力,材料无法复
9、原,留有永久形变。料无法复原,留有永久形变。B点为屈服点点为屈服点,对应的,对应的应力称为应力称为屈服应力或屈服强度屈服应力或屈服强度。7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 屈服点之后,屈服点之后,应力有所下降应力有所下降,在较小的负荷下即可产生形,在较小的负荷下即可产生形变,称为应变软化。之后应力几乎不变的情况下应变有很大变,称为应变软化。之后应力几乎不变的情况下应变有很大程度的增加,最后应力又随应变迅速增加,直到材料断裂。程度的增加,最后应力又随应变迅速增加,直到材料断裂。7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 四、四、几类高聚
10、物的拉伸行为几类高聚物的拉伸行为 1.玻璃态高聚物的拉伸玻璃态高聚物的拉伸 7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 (1)当当TTg是,应力与应变成正比,最后应变是,应力与应变成正比,最后应变不到不到10%就发生断裂的(就发生断裂的(曲线曲线),称为),称为脆性断裂脆性断裂。7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 (2)当温度稍升高些,但仍在当温度稍升高些,但仍在Tg以下,以下,曲线曲线上出现了一上出现了一个屈服点个屈服点B,过了,过了B点,应力反而下降,试样应变增大,继续拉点,应力反而下降,试样应变增大,继续拉伸,试样将发生断裂,总
11、的应变不超过伸,试样将发生断裂,总的应变不超过20%,称为,称为韧性断裂。韧性断裂。7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 (3)当温度升高到当温度升高到Tg以下几十度范围内,如以下几十度范围内,如曲线曲线,过,过了屈服点后,应力先降后升,应变增大很多,直到了屈服点后,应力先降后升,应变增大很多,直到C点断裂,点断裂,C点的应力称为断裂应力,对应的应变称为断裂伸长率点的应力称为断裂应力,对应的应变称为断裂伸长率。7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 (4)当温度升至当温度升至Tg以上,试样进入高弹态,在应力不大以上,试样进入高弹态,
12、在应力不大时,就可发生高弹形变,如时,就可发生高弹形变,如曲线曲线,无屈服点,而呈现一段,无屈服点,而呈现一段较长的平台,直到试样断裂前,曲线又出现急剧的上升。较长的平台,直到试样断裂前,曲线又出现急剧的上升。7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 2.结晶态高聚物的拉伸结晶态高聚物的拉伸 7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 (1)应力随应变线性增加,试样被均匀的拉长,应力随应变线性增加,试样被均匀的拉长,伸长率可达百分之几到十几。伸长率可达百分之几到十几。7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 (2
13、)到到B点后,被拉伸的试样出现一个或几个点后,被拉伸的试样出现一个或几个“细颈细颈”,细颈部长不断扩展,直到整个试样完全细变为止,在这个细颈部长不断扩展,直到整个试样完全细变为止,在这个阶段,应力变化不大,而应变增加幅度很大。阶段,应力变化不大,而应变增加幅度很大。7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 (3)变为细颈的试样重新被均匀拉伸,直到出现断裂变为细颈的试样重新被均匀拉伸,直到出现断裂。7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质比较玻璃态高聚物的拉伸与结晶态高聚物的拉伸相同点与区别比较玻璃态高聚物的拉伸与结晶态高聚物的拉伸相同点与
14、区别 (1)相同点:相同点:两种拉伸过程都经历弹性变形,屈两种拉伸过程都经历弹性变形,屈服(服(“成颈成颈”),发展大形变,应变硬化。断裂前的大),发展大形变,应变硬化。断裂前的大形变在室温时都不能自发恢复,加热后才能恢复原状态。形变在室温时都不能自发恢复,加热后才能恢复原状态。7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 (2)不相同点:不相同点:冷拉温度范围不同冷拉温度范围不同a.玻璃态高聚物拉伸温度区间是:玻璃态高聚物拉伸温度区间是:TbTgb.结晶态高聚物拉伸温度区间是:结晶态高聚物拉伸温度区间是:TgTm7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合
15、物的力学性质 本质差别本质差别 a.玻璃态高聚物只发生分子链的取向,不发生相变玻璃态高聚物只发生分子链的取向,不发生相变 b.结晶态高聚物发生结晶的破坏,取向,再结晶。结晶态高聚物发生结晶的破坏,取向,再结晶。7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 五、五、高聚物的强度与破坏高聚物的强度与破坏 1.脆性断裂与韧性断裂脆性断裂与韧性断裂 (1)应力应力-应变曲线:应变曲线:如果材料只发生普弹形变,在如果材料只发生普弹形变,在屈服之前就发生断裂,则这种断裂为脆性断裂;如果材屈服之前就发生断裂,则这种断裂为脆性断裂;如果材料发生屈服或高弹形变后才断裂,则为料发生屈服或高
16、弹形变后才断裂,则为韧性断裂韧性断裂。7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 (2)断裂能量)断裂能量:以冲击强度为以冲击强度为2KJ/M2作为临界指标。作为临界指标。一般刻痕试样的冲击强度小于这一数值为脆性断裂,大一般刻痕试样的冲击强度小于这一数值为脆性断裂,大于这一数值时为韧性断裂。但这一指标并不是绝对的,于这一数值时为韧性断裂。但这一指标并不是绝对的,例如玻璃纤维增强的聚酯塑料例如玻璃纤维增强的聚酯塑料,甚至在脆性破坏时也有,甚至在脆性破坏时也有很高的冲击强度。很高的冲击强度。7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 2.高聚物的
17、理论强度高聚物的理论强度 从分子结构的角度来看,高聚物的断裂要破坏分子从分子结构的角度来看,高聚物的断裂要破坏分子内的化学键,分子间的范德华力与氢键。内的化学键,分子间的范德华力与氢键。7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 3.影响聚合物实际强度的因素影响聚合物实际强度的因素 影响聚合物实际强度的因素是比较多,也比较复影响聚合物实际强度的因素是比较多,也比较复杂,但总的来说可分为两类:杂,但总的来说可分为两类:1.与材料本身有关:与材料本身有关:聚合物的结构、分子量及其分布、支聚合物的结构、分子
18、量及其分布、支化与交联、结晶与取向、增塑与共混等;化与交联、结晶与取向、增塑与共混等;2.与外界条件有关:与外界条件有关:温度与湿度、氧化与老化、光照等;温度与湿度、氧化与老化、光照等;7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 (1)高聚物的结构高聚物的结构 极性聚合物比非极性聚合物有更大的分子间作用力,极性聚合物比非极性聚合物有更大的分子间作用力,因此在高分子链上引入极性基团将使材料的强度提高。因此在高分子链上引入极性基团将使材料的强度提高。(a)极性和氢键极性和氢键7.1 玻璃态与结晶态聚合物的力学性质玻璃态与结晶态聚合物的力学性质 例如:例如:PE的拉伸强度的
展开阅读全文