书签 分享 收藏 举报 版权申诉 / 19
上传文档赚钱

类型函数的奇偶性高考数学课件-新课标-人教版.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4039018
  • 上传时间:2022-11-06
  • 格式:PPT
  • 页数:19
  • 大小:572.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《函数的奇偶性高考数学课件-新课标-人教版.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    函数 奇偶性 高考 数学 课件 新课 人教版 下载 _其它资料_高考专区_数学_高中
    资源描述:

    1、应用应用基础知识图表基础知识图表奇偶性奇偶性定义定义判定方法判定方法定义法定义法性质法性质法图象法图象法图象性质图象性质函数性质函数性质y=xy=x3 3 y=xy=x2 2yxoaP/(-a,f(-a)P(a,f(a)-ayxoaP/(-a,f(-a)P(a,f(a)-a(-a,-f(a)(-a,f(a)y=X3是是奇奇函数函数y=x2是是偶偶函数函数1.1.函数的奇偶性的定义函数的奇偶性的定义2.2.具有奇偶性的函数图象特点(性质)具有奇偶性的函数图象特点(性质)3.3.奇偶函数的性质奇偶函数的性质(补充)(补充),(1)为偶函数为偶函数(2)若)若奇奇函数函数 的定义域含有的定义域含有0

    2、,则,则()f x()(|)f xfx(0)0f()f x(3)设)设 ,的定义域分别是的定义域分别是 ,那么在它们的,那么在它们的公共定义域上:奇公共定义域上:奇+奇奇=奇,奇奇奇,奇奇=偶,偶偶,偶+偶偶=偶,偶偶偶,偶偶=偶,奇偶偶,奇偶=奇奇(4)奇函数的反函数也是奇函数。)奇函数的反函数也是奇函数。(5)奇奇函数在关于原点对称区间上的函数在关于原点对称区间上的单调性单调性相同相同,偶偶函函数在关于原点对称区间上的数在关于原点对称区间上的单调性单调性相反相反。(理)(理)(6)奇(偶)函数的导函数为偶(奇)函数)奇(偶)函数的导函数为偶(奇)函数.()f x()g x12,D D例例1

    3、.1.判断下列函数的奇偶性:判断下列函数的奇偶性:111xfxxx(2)221lglgfxxx(1)532fxxxx(3)2020 xxfxxx(4)注意:定义域关于原点对称;练习练习:当当a为何值时,函数为何值时,函数 为偶函数;为偶函数;2(),(5,)f xxxa 小结小结:函数奇偶性的判定方法函数奇偶性的判定方法 (1)根据根据定义定义判定,判定,首先首先看函数的定义域是否关于看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数原点对称,若不对称则函数是非奇非偶函数.若对称,若对称,再再判定判定f(-x)=f(x)或或f(-x)=-f(x).有时判定有时判定f(-x)=f(x)

    4、比比较困难,可考虑较困难,可考虑等价判定等价判定f(-x)f(x)=0或或f(x)/f(-x)=1(f(x)0)(2)利用定理,借助函数的利用定理,借助函数的图象图象判定判定 (3)性质性质法判定法判定 在定义域的公共部分内在定义域的公共部分内奇奇+奇奇=奇,奇奇奇,奇奇=偶,偶偶,偶+偶偶=偶,偶偶偶,偶偶=偶,奇偶偶,奇偶=奇奇 偶函数在区间偶函数在区间(a,b)上递增上递增(减减),则在区间,则在区间(-b,-a)上递上递减减(增增);奇函数在区间;奇函数在区间(a,b)与与(-b,-a)上的增减性相同上的增减性相同.偶函数偶函数y=f(x)在在(-,0)上是增函数,则)上是增函数,则f

    5、(x)在在(0,+)上上是(是()A.增函数增函数 B.减函数减函数 C.非单调函数非单调函数 D.单调性不确定单调性不确定例例2.2.下面四个结论:偶函数的图象一定与下面四个结论:偶函数的图象一定与y轴相交;奇函轴相交;奇函数的图象一定通过原点;偶函数的图象关于数的图象一定通过原点;偶函数的图象关于y轴对称;既是轴对称;既是奇函数又是偶函数的函数一定是奇函数又是偶函数的函数一定是f(x)=0(xR),函数,函数f(x+1)为为奇函数,则有奇函数,则有f(x+1)=-f(-x+1).其中正确命题的个数是()其中正确命题的个数是()A.1 B.2 C.3 D.4特点:特点:自变量取一对相反数,若

    6、函数值互为相反数,则为奇函自变量取一对相反数,若函数值互为相反数,则为奇函数;自变量取一对相反数,若函数值相等,则为偶函数。数;自变量取一对相反数,若函数值相等,则为偶函数。练习:练习:已知已知 是定义在是定义在R R上的奇函数,上的奇函数,求求a a的值。的值。例例3.3.设奇函数设奇函数f(x)的定义域为的定义域为-5,5,若当若当x0,5时时,f(x)的图象如图,则不的图象如图,则不等式等式f(x)0的解集为的解集为_ 拓展拓展:()0 x f xx0521y3 3拓展拓展:(理理)()0 x fx0-5-2练习:练习:若若 ,且,且 ,求求 的值;的值;若若 ,且,且 ,求,求 的值;

    7、的值;2)(24bxaxxf5)(cf)(cf 2)(3bxaxxf5)(cf)(cf 例例4 4.已知已知 是定义在是定义在R上的奇函数,当上的奇函数,当时,时,当,当 时时,则则 的表达式是的表达式是 ;)(xfy 0 xxxxf2)(20 x)(xf例例5.函数函数f(x)=asin2x+btanx+1,且且 f(-2)=10f(-2)=10,则,则f(+2)f(+2)等等于于 .例例6、已知是定义在、已知是定义在R上的偶函数,且上的偶函数,且在在0,+)上为增函)上为增函数,数,则不等式,则不等式 的解集为的解集为 .1()02f(1)0f x 2()0f x4(log)0fx 拓展拓

    8、展:4(log)0fx 拓展拓展(理理):(log)0afx 练习:练习:定义在实数集定义在实数集R R上的函数上的函数f(x)f(x),对任意,对任意x x,yRyR,有,有f(x+y)+f(x-y)=2f(x)f(y)f(x+y)+f(x-y)=2f(x)f(y),且,且f(x)f(x)不等于不等于0 0 求证:求证:f(0)=1f(0)=1;f(x)f(x)为偶函数为偶函数 (1)如果对于函数如果对于函数f(x)定义域内任意一个定义域内任意一个x,都有,都有f(-x)=f(x),那么函数那么函数f(x)就叫做就叫做偶函数偶函数.(2)如果对于函数如果对于函数f(x)定义域内任意一个定义域内任意一个x,都有,都有f(-x)=-f(x),那么函数那么函数f(x)就叫做就叫做奇函数奇函数 如果函数如果函数f(x)是奇函数或偶函数,那么我们就说函数是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性具有奇偶性 1.1.函数的奇偶性的定义函数的奇偶性的定义2.2.具有奇偶性的函数图象特点(性质)具有奇偶性的函数图象特点(性质)奇奇 函数函数 函数函数的图象关于的图象关于 对称;对称;偶偶 函数函数 函数的图象关于函数的图象关于 对称对称.3.3.奇偶函数的性质奇偶函数的性质(补充)(补充)

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:函数的奇偶性高考数学课件-新课标-人教版.ppt
    链接地址:https://www.163wenku.com/p-4039018.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库