书签 分享 收藏 举报 版权申诉 / 44
上传文档赚钱

类型商务统计学英文版教学课件第13章.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:3996296
  • 上传时间:2022-11-02
  • 格式:PPT
  • 页数:44
  • 大小:1,020.53KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《商务统计学英文版教学课件第13章.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    商务 统计学 英文 教学 课件 13
    资源描述:

    1、Introduction to Multiple RegressionChapter 13ObjectivesIn this chapter,you learn:nHow to develop a multiple regression modelnHow to interpret the regression coefficientsnHow to determine which independent variables to include in the regression modelnHow to use categorical independent variables in a

    2、regression modelThe Multiple Regression ModelIdea:Examine the linear relationship between 1 dependent(Y)&2 or more independent variables(Xi)ikik2i21i10iXXXY Multiple Regression Model with k Independent Variables:Y-interceptPopulation slopesRandom ErrorDCOVAMultiple Regression EquationThe coefficient

    3、s of the multiple regression model are estimated using sample datakik2i21i10iXbXbXbbY Estimated(or predicted)value of YEstimated slope coefficientsMultiple regression equation with k independent variables:EstimatedinterceptIn this chapter we will use Excel and Minitab to obtain the regression slope

    4、coefficients and other regression summary measures.DCOVATwo variable modelYX1X222110XbXbbYSlope for variable X1Slope for variable X2Multiple Regression Equation(continued)DCOVAA distributor of frozen dessert pies wants to evaluate factors thought to influence demandDependent variable:Pie sales(units

    5、 per week)Independent variables:Price(in$)Advertising($100s)Data are collected for 15 weeksExample:2 Independent VariablesDCOVAPie Sales ExampleSales=b0+b1(Price)+b2(Advertising)WeekPie SalesPrice($)Advertising($100s)13505.503.324607.503.333508.003.044308.004.553506.803.063807.504.074304.503.084706.

    6、403.794507.003.5104905.004.0113407.203.5123007.903.2134405.904.0144505.003.5153007.002.7Multiple regression equation:DCOVAExcel Multiple Regression OutputRegression StatisticsMultiple R0.72213R Square0.52148Adjusted R Square0.44172Standard Error47.46341Observations15ANOVA dfSSMSFSignificance FRegres

    7、sion229460.02714730.0136.538610.01201Residual1227033.3062252.776Total1456493.333 CoefficientsStandard Errort StatP-valueLower 95%Upper 95%Intercept306.52619114.253892.682850.0199357.58835555.46404Price-24.9750910.83213-2.305650.03979-48.57626-1.37392Advertising74.1309625.967322.854780.0144917.553031

    8、30.70888ertising)74.131(Adv ce)24.975(Pri-306.526 SalesDCOVAMinitab Multiple Regression OutputThe regression equation isSales=307-25.0 Price+74.1 Advertising Predictor Coef SE Coef T PConstant306.50 114.30 2.68 0.020Price-24.98 10.83 -2.31 0.040Advertising 74.13 25.97 2.85 0.014 S=47.4634 R-Sq=52.1%

    9、R-Sq(adj)=44.2%Analysis of Variance Source DF SS MS F PRegression 2 29460 14730 6.54 0.012Residual Error 12 27033 2253Total 14 56493ertising)74.131(Adv ce)24.975(Pri-306.526 Sales DCOVAThe Multiple Regression Equationertising)74.131(Adv ce)24.975(Pri-306.526 Salesb1=-24.975:sales will decrease,on av

    10、erage,by 24.975 pies per week for each$1 increase in selling price,net of the effects of changes due to advertisingb2=74.131:sales will increase,on average,by 74.131 pies per week for each$100 increase in advertising,net of the effects of changes due to pricewhere Sales is in number of pies per week

    11、 Price is in$Advertising is in$100s.DCOVAUsing The Equation to Make PredictionsPredict sales for a week in which the selling price is$5.50 and advertising is$350:Predicted sales is 428.62 pies428.62(3.5)74.131 (5.50)24.975-306.526 ertising)74.131(Adv ce)24.975(Pri-306.526 SalesNote that Advertising

    12、is in$100s,so$350 means that X2=3.5DCOVAPredictions in Excel using PHStatnPHStat|regression|multiple regression Check the“confidence and prediction interval estimates”boxDCOVAInput valuesPredictions in PHStat(continued)Predicted Y valueConfidence interval for the mean value of Y,given these X values

    13、Prediction interval for an individual Y value,given these X valuesDCOVAPredictions in MinitabInput valuesPredicted Values for New Observations NewObs Fit SE Fit 95%CI 95%PI 1 428.6 17.2 (391.1,466.1)(318.6,538.6)Values of Predictors for New Observations NewObs Price Advertising 1 5.50 3.50value Y Pr

    14、edicted Confidence interval for the mean value of Y,given these X values Prediction interval for an individual Y value,given these X valuesDCOVAThe Coefficient of Multiple Determination,r2nReports the proportion of total variation in Y explained by all X variables taken togethersquares of sum totals

    15、quares of sum regressionSSTSSRr2DCOVARegression StatisticsMultiple R0.72213R Square0.52148Adjusted R Square0.44172Standard Error47.46341Observations15ANOVA dfSSMSFSignificance FRegression229460.02714730.0136.538610.01201Residual1227033.3062252.776Total1456493.333 CoefficientsStandard Errort StatP-va

    16、lueLower 95%Upper 95%Intercept306.52619114.253892.682850.0199357.58835555.46404Price-24.9750910.83213-2.305650.03979-48.57626-1.37392Advertising74.1309625.967322.854780.0144917.55303130.70888.5214856493.329460.0SSTSSRr252.1%of the variation in pie sales is explained by the variation in price and adv

    17、ertisingMultiple Coefficient of Determination In ExcelDCOVAMultiple Coefficient of Determination In MinitabThe regression equation isSales=307-25.0 Price+74.1 Advertising Predictor Coef SE Coef T PConstant306.50 114.30 2.68 0.020Price-24.98 10.83 -2.31 0.040Advertising 74.13 25.97 2.85 0.014 S=47.46

    18、34 R-Sq=52.1%R-Sq(adj)=44.2%Analysis of Variance Source DF SS MS F PRegression 2 29460 14730 6.54 0.012Residual Error 12 27033 2253Total 14 56493.5214856493.329460.0SSTSSRr252.1%of the variation in pie sales is explained by the variation in price and advertisingDCOVAAdjusted r2nr2 never decreases wh

    19、en a new X variable is added to the modelnThis can be a disadvantage when comparing modelsnWhat is the net effect of adding a new variable?nWe lose a degree of freedom when a new X variable is addednDid the new X variable add enough explanatory power to offset the loss of one degree of freedom?DCOVA

    20、nShows the proportion of variation in Y explained by all X variables adjusted for the number of X variables used (where n=sample size,k=number of independent variables)nPenalizes excessive use of unimportant independent variablesnSmaller than r2nUseful in comparing among modelsAdjusted r2(continued)

    21、11)1(122knnrradjDCOVARegression StatisticsMultiple R0.72213R Square0.52148Adjusted R Square0.44172Standard Error47.46341Observations15ANOVA dfSSMSFSignificance FRegression229460.02714730.0136.538610.01201Residual1227033.3062252.776Total1456493.333 CoefficientsStandard Errort StatP-valueLower 95%Uppe

    22、r 95%Intercept306.52619114.253892.682850.0199357.58835555.46404Price-24.9750910.83213-2.305650.03979-48.57626-1.37392Advertising74.1309625.967322.854780.0144917.55303130.70888.44172r2adj44.2%of the variation in pie sales is explained by the variation in price and advertising,taking into account the

    23、sample size and number of independent variablesAdjusted r2 in ExcelDCOVAAdjusted r2 in MinitabThe regression equation isSales=307-25.0 Price+74.1 Advertising Predictor Coef SE Coef T PConstant306.50 114.30 2.68 0.020Price-24.98 10.83 -2.31 0.040Advertising 74.13 25.97 2.85 0.014 S=47.4634 R-Sq=52.1%

    24、R-Sq(adj)=44.2%Analysis of Variance Source DF SS MS F PRegression 2 29460 14730 6.54 0.012Residual Error 12 27033 2253Total 14 56493.44172r2adj44.2%of the variation in pie sales is explained by the variation in price and advertising,taking into account the sample size and number of independent varia

    25、blesDCOVAnF Test for Overall Significance of the ModelnShows if there is a linear relationship between all of the X variables considered together and YnUse F-test statisticnHypotheses:H0:1=2=k=0 (no linear relationship)H1:at least one i 0 (at least one independent variable affects Y)Is the Model Sig

    26、nificant?DCOVAF Test for Overall SignificancenTest statistic:where FSTAT has numerator d.f.=k and denominator d.f.=(n k-1)1knSSEkSSRMSEMSRFSTATDCOVARegression StatisticsMultiple R0.72213R Square0.52148Adjusted R Square0.44172Standard Error47.46341Observations15ANOVA dfSSMSFSignificance FRegression22

    27、9460.02714730.0136.538610.01201Residual1227033.3062252.776Total1456493.333 CoefficientsStandard Errort StatP-valueLower 95%Upper 95%Intercept306.52619114.253892.682850.0199357.58835555.46404Price-24.9750910.83213-2.305650.03979-48.57626-1.37392Advertising74.1309625.967322.854780.0144917.55303130.708

    28、88(continued)F Test for Overall Significance In ExcelWith 2 and 12 degrees of freedomP-value for the F Test6.53862252.814730.0MSEMSRFSTATDCOVAF Test for Overall Significance In MinitabThe regression equation isSales=307-25.0 Price+74.1 Advertising Predictor Coef SE Coef T PConstant306.50 114.30 2.68

    29、 0.020Price-24.98 10.83 -2.31 0.040Advertising 74.13 25.97 2.85 0.014 S=47.4634 R-Sq=52.1%R-Sq(adj)=44.2%Analysis of Variance Source DF SS MS F PRegression 2 29460 14730 6.54 0.012Residual Error 12 27033 2253Total 14 564936.53862252.814730.0MSEMSRFSTATWith 2 and 12 degrees of freedomP-value for the

    30、F TestDCOVAH0:1=2=0H1:1 and 2 not both zero=.05df1=2 df2=12 Test Statistic:Decision:Conclusion:Since FSTAT test statistic is in the rejection region(p-value .05),reject H0There is evidence that at least one independent variable affects Y0 =.05F0.05=3.885Reject H0Do not reject H06.5386FSTATMSEMSRCrit

    31、ical Value:F0.05=3.885F Test for Overall Significance(continued)FDCOVATwo variable modelYX1X222110XbXbbYYi Yix2ix1iThe best fit equation is found by minimizing the sum of squared errors,e2Sample observationResiduals in Multiple RegressionResidual=ei =(Yi Yi)DCOVAMultiple Regression AssumptionsAssump

    32、tions:nThe errors are normally distributednErrors have a constant variancenThe model errors are independentei=(Yi Yi)Errors(residuals)from the regression model:DCOVAResidual Plots Used in Multiple RegressionnThese residual plots are used in multiple regression:nResiduals vs.YinResiduals vs.X1inResid

    33、uals vs.X2inResiduals vs.time(if time series data)Use the residual plots to check for violations of regression assumptionsDCOVAnUse t tests of individual variable slopesnShows if there is a linear relationship between the variable Xj and Y holding constant the effects of other X variablesnHypotheses

    34、:nH0:j=0(no linear relationship)nH1:j 0 (linear relationship does exist between Xj and Y)Are Individual Variables Significant?DCOVAH0:j =0(no linear relationship between Xj and Y)H1:j 0 (linear relationship does exist between Xj and Y)Test Statistic:(df=n k 1)Are Individual Variables Significant?jbj

    35、STATSbt0(continued)DCOVARegression StatisticsMultiple R0.72213R Square0.52148Adjusted R Square0.44172Standard Error47.46341Observations15ANOVA dfSSMSFSignificance FRegression229460.02714730.0136.538610.01201Residual1227033.3062252.776Total1456493.333 CoefficientsStandard Errort StatP-valueLower 95%U

    36、pper 95%Intercept306.52619114.253892.682850.0199357.58835555.46404Price-24.9750910.83213-2.305650.03979-48.57626-1.37392Advertising74.1309625.967322.854780.0144917.55303130.70888t Stat for Price is tSTAT=-2.306,with p-value.0398t Stat for Advertising is tSTAT=2.855,with p-value.0145(continued)Are In

    37、dividual Variables Significant?Excel OutputDCOVAAre Individual Variables Significant?Minitab OutputThe regression equation isSales=307-25.0 Price+74.1 Advertising Predictor Coef SE Coef T PConstant306.50 114.30 2.68 0.020Price-24.98 10.83 -2.31 0.040Advertising 74.13 25.97 2.85 0.014 S=47.4634 R-Sq=

    38、52.1%R-Sq(adj)=44.2%Analysis of Variance Source DF SS MS F PRegression 2 29460 14730 6.54 0.012Residual Error 12 27033 2253Total 14 56493t Stat for Price is tSTAT=-2.31,with p-value.040t Stat for Advertising is tSTAT=2.85,with p-value.014DCOVAd.f.=15-2-1=12n=.05t/2=2.1788Inferences about the Slope:t

    39、 Test ExampleH0:j=0H1:j 0The test statistic for each variable falls in the rejection region(p-values .05)There is evidence that both Price and Advertising affect pie sales at =.05From the Excel output:Reject H0 for each variableDecision:Conclusion:Reject H0Reject H0/2=.025-t/2Do not reject H00t/2/2=

    40、.025-2.17882.1788For Price tSTAT=-2.306,with p-value.0398For Advertising tSTAT=2.855,with p-value.0145DCOVAConfidence Interval Estimate for the SlopeConfidence interval for the population slope j Example:Form a 95%confidence interval for the effect of changes in price(X1)on pie sales:-24.975 (2.1788

    41、)(10.832)So the interval is (-48.576 ,-1.374)(This interval does not contain zero,so price has a significant effect on sales)jbjStb2/CoefficientsStandard ErrorIntercept306.52619114.25389Price-24.9750910.83213Advertising74.1309625.96732where t has (n k 1)d.f.Here,t has (15 2 1)=12 d.f.DCOVAConfidence

    42、 Interval Estimate for the SlopeConfidence interval for the population slope jExample:Excel output also reports these interval endpoints:Weekly sales are estimated to be reduced by between 1.37 to 48.58 pies for each increase of$1 in the selling price,holding the effect of advertising constant Coeff

    43、icientsStandard ErrorLower 95%Upper 95%Intercept306.52619114.2538957.58835555.46404Price-24.9750910.83213-48.57626-1.37392Advertising74.1309625.9673217.55303130.70888(continued)DCOVAUsing Dummy VariablesnA dummy variable is a categorical independent variable with two levels:nyes or no,on or off,male

    44、 or femalencoded as 0 or 1nAssumes the slopes associated with numerical independent variables do not change with the value for the categorical variablenIf more than two levels,the number of dummy variables needed is(number of levels-1)DCOVADummy-Variable Example (with 2 Levels)Let:Y =pie salesX1=pri

    45、ceX2=holiday (X2=1 if a holiday occurred during the week)(X2=0 if there was no holiday that week)210XbXbbY21DCOVASame slopeDummy-Variable Example(with 2 Levels)(continued)X1(Price)Y(sales)b0+b2b0 101012010Xb b (0)bXbbYXb)b(b(1)bXbbY121121HolidayNo HolidayDifferent interceptHoliday(X2=1)No Holiday(X2

    46、=0)If H0:2=0 is rejected,then“Holiday”has a significant effect on pie salesDCOVASales:number of pies sold per weekPrice:pie price in$Holiday:Interpreting the Dummy Variable Coefficient(with 2 Levels)Example:1 If a holiday occurred during the week0 If no holiday occurredb2=15:on average,sales were 15

    47、 pies greater in weeks with a holiday than in weeks without a holiday,given the same price)15(Holiday 30(Price)-300 SalesDCOVAInteraction Between Independent VariablesnHypothesizes interaction between pairs of X variablesnResponse to one X variable may vary at different levels of another X variablen

    48、Contains two-way cross product termsn)X(XbXbXbbXbXbXbbY213221103322110DCOVAEffect of InteractionnGiven:nWithout interaction term,effect of X1 on Y is measured by 1nWith interaction term,effect of X1 on Y is measured by 1+3 X2nEffect changes as X2 changes XXXXY21322110DCOVAX2=1:Y=1+2X1+3(1)+4X1(1)=4+

    49、6X1 X2=0:Y=1+2X1+3(0)+4X1(0)=1+2X1 Interaction ExampleSlopes are different if the effect of X1 on Y depends on X2 valueX1Y =1+2X1+3X2+4X1X2 Suppose X2 is a dummy variable and the estimated regression equation is YDCOVAChapter SummaryIn this chapter we discussed:nHow to develop a multiple regression modelnHow to interpret the regression coefficientsnHow to determine which independent variables to include in the regression modelnHow to use categorical independent variables in a regression model

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:商务统计学英文版教学课件第13章.ppt
    链接地址:https://www.163wenku.com/p-3996296.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库