商务统计学英文版教学课件第13章.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《商务统计学英文版教学课件第13章.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 商务 统计学 英文 教学 课件 13
- 资源描述:
-
1、Introduction to Multiple RegressionChapter 13ObjectivesIn this chapter,you learn:nHow to develop a multiple regression modelnHow to interpret the regression coefficientsnHow to determine which independent variables to include in the regression modelnHow to use categorical independent variables in a
2、regression modelThe Multiple Regression ModelIdea:Examine the linear relationship between 1 dependent(Y)&2 or more independent variables(Xi)ikik2i21i10iXXXY Multiple Regression Model with k Independent Variables:Y-interceptPopulation slopesRandom ErrorDCOVAMultiple Regression EquationThe coefficient
3、s of the multiple regression model are estimated using sample datakik2i21i10iXbXbXbbY Estimated(or predicted)value of YEstimated slope coefficientsMultiple regression equation with k independent variables:EstimatedinterceptIn this chapter we will use Excel and Minitab to obtain the regression slope
4、coefficients and other regression summary measures.DCOVATwo variable modelYX1X222110XbXbbYSlope for variable X1Slope for variable X2Multiple Regression Equation(continued)DCOVAA distributor of frozen dessert pies wants to evaluate factors thought to influence demandDependent variable:Pie sales(units
5、 per week)Independent variables:Price(in$)Advertising($100s)Data are collected for 15 weeksExample:2 Independent VariablesDCOVAPie Sales ExampleSales=b0+b1(Price)+b2(Advertising)WeekPie SalesPrice($)Advertising($100s)13505.503.324607.503.333508.003.044308.004.553506.803.063807.504.074304.503.084706.
6、403.794507.003.5104905.004.0113407.203.5123007.903.2134405.904.0144505.003.5153007.002.7Multiple regression equation:DCOVAExcel Multiple Regression OutputRegression StatisticsMultiple R0.72213R Square0.52148Adjusted R Square0.44172Standard Error47.46341Observations15ANOVA dfSSMSFSignificance FRegres
7、sion229460.02714730.0136.538610.01201Residual1227033.3062252.776Total1456493.333 CoefficientsStandard Errort StatP-valueLower 95%Upper 95%Intercept306.52619114.253892.682850.0199357.58835555.46404Price-24.9750910.83213-2.305650.03979-48.57626-1.37392Advertising74.1309625.967322.854780.0144917.553031
8、30.70888ertising)74.131(Adv ce)24.975(Pri-306.526 SalesDCOVAMinitab Multiple Regression OutputThe regression equation isSales=307-25.0 Price+74.1 Advertising Predictor Coef SE Coef T PConstant306.50 114.30 2.68 0.020Price-24.98 10.83 -2.31 0.040Advertising 74.13 25.97 2.85 0.014 S=47.4634 R-Sq=52.1%
9、R-Sq(adj)=44.2%Analysis of Variance Source DF SS MS F PRegression 2 29460 14730 6.54 0.012Residual Error 12 27033 2253Total 14 56493ertising)74.131(Adv ce)24.975(Pri-306.526 Sales DCOVAThe Multiple Regression Equationertising)74.131(Adv ce)24.975(Pri-306.526 Salesb1=-24.975:sales will decrease,on av
10、erage,by 24.975 pies per week for each$1 increase in selling price,net of the effects of changes due to advertisingb2=74.131:sales will increase,on average,by 74.131 pies per week for each$100 increase in advertising,net of the effects of changes due to pricewhere Sales is in number of pies per week
11、 Price is in$Advertising is in$100s.DCOVAUsing The Equation to Make PredictionsPredict sales for a week in which the selling price is$5.50 and advertising is$350:Predicted sales is 428.62 pies428.62(3.5)74.131 (5.50)24.975-306.526 ertising)74.131(Adv ce)24.975(Pri-306.526 SalesNote that Advertising
12、is in$100s,so$350 means that X2=3.5DCOVAPredictions in Excel using PHStatnPHStat|regression|multiple regression Check the“confidence and prediction interval estimates”boxDCOVAInput valuesPredictions in PHStat(continued)Predicted Y valueConfidence interval for the mean value of Y,given these X values
13、Prediction interval for an individual Y value,given these X valuesDCOVAPredictions in MinitabInput valuesPredicted Values for New Observations NewObs Fit SE Fit 95%CI 95%PI 1 428.6 17.2 (391.1,466.1)(318.6,538.6)Values of Predictors for New Observations NewObs Price Advertising 1 5.50 3.50value Y Pr
14、edicted Confidence interval for the mean value of Y,given these X values Prediction interval for an individual Y value,given these X valuesDCOVAThe Coefficient of Multiple Determination,r2nReports the proportion of total variation in Y explained by all X variables taken togethersquares of sum totals
15、quares of sum regressionSSTSSRr2DCOVARegression StatisticsMultiple R0.72213R Square0.52148Adjusted R Square0.44172Standard Error47.46341Observations15ANOVA dfSSMSFSignificance FRegression229460.02714730.0136.538610.01201Residual1227033.3062252.776Total1456493.333 CoefficientsStandard Errort StatP-va
16、lueLower 95%Upper 95%Intercept306.52619114.253892.682850.0199357.58835555.46404Price-24.9750910.83213-2.305650.03979-48.57626-1.37392Advertising74.1309625.967322.854780.0144917.55303130.70888.5214856493.329460.0SSTSSRr252.1%of the variation in pie sales is explained by the variation in price and adv
17、ertisingMultiple Coefficient of Determination In ExcelDCOVAMultiple Coefficient of Determination In MinitabThe regression equation isSales=307-25.0 Price+74.1 Advertising Predictor Coef SE Coef T PConstant306.50 114.30 2.68 0.020Price-24.98 10.83 -2.31 0.040Advertising 74.13 25.97 2.85 0.014 S=47.46
18、34 R-Sq=52.1%R-Sq(adj)=44.2%Analysis of Variance Source DF SS MS F PRegression 2 29460 14730 6.54 0.012Residual Error 12 27033 2253Total 14 56493.5214856493.329460.0SSTSSRr252.1%of the variation in pie sales is explained by the variation in price and advertisingDCOVAAdjusted r2nr2 never decreases wh
19、en a new X variable is added to the modelnThis can be a disadvantage when comparing modelsnWhat is the net effect of adding a new variable?nWe lose a degree of freedom when a new X variable is addednDid the new X variable add enough explanatory power to offset the loss of one degree of freedom?DCOVA
20、nShows the proportion of variation in Y explained by all X variables adjusted for the number of X variables used (where n=sample size,k=number of independent variables)nPenalizes excessive use of unimportant independent variablesnSmaller than r2nUseful in comparing among modelsAdjusted r2(continued)
21、11)1(122knnrradjDCOVARegression StatisticsMultiple R0.72213R Square0.52148Adjusted R Square0.44172Standard Error47.46341Observations15ANOVA dfSSMSFSignificance FRegression229460.02714730.0136.538610.01201Residual1227033.3062252.776Total1456493.333 CoefficientsStandard Errort StatP-valueLower 95%Uppe
22、r 95%Intercept306.52619114.253892.682850.0199357.58835555.46404Price-24.9750910.83213-2.305650.03979-48.57626-1.37392Advertising74.1309625.967322.854780.0144917.55303130.70888.44172r2adj44.2%of the variation in pie sales is explained by the variation in price and advertising,taking into account the
23、sample size and number of independent variablesAdjusted r2 in ExcelDCOVAAdjusted r2 in MinitabThe regression equation isSales=307-25.0 Price+74.1 Advertising Predictor Coef SE Coef T PConstant306.50 114.30 2.68 0.020Price-24.98 10.83 -2.31 0.040Advertising 74.13 25.97 2.85 0.014 S=47.4634 R-Sq=52.1%
24、R-Sq(adj)=44.2%Analysis of Variance Source DF SS MS F PRegression 2 29460 14730 6.54 0.012Residual Error 12 27033 2253Total 14 56493.44172r2adj44.2%of the variation in pie sales is explained by the variation in price and advertising,taking into account the sample size and number of independent varia
展开阅读全文