商务统计学英文版教学课件第12章.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《商务统计学英文版教学课件第12章.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 商务 统计学 英文 教学 课件 12
- 资源描述:
-
1、Simple Linear RegressionChapter 12ObjectivesIn this chapter,you learn:How to use regression analysis to predict the value of a dependent variable based on a value of an independent variableTo understand the meaning of the regression coefficients b0 and b1To evaluate the assumptions of regression ana
2、lysis and know what to do if the assumptions are violatedTo make inferences about the slope and correlation coefficientTo estimate mean values and predict individual valuesCorrelation vs.RegressionA scatter plot can be used to show the relationship between two variablesCorrelation analysis is used t
3、o measure the strength of the association(linear relationship)between two variablesCorrelation is only concerned with strength of the relationship No causal effect is implied with correlationScatter plots were first presented in Ch.2Correlation was first presented in Ch.3DCOVATypes of RelationshipsY
4、XYXYYXXLinear relationshipsCurvilinear relationshipsDCOVATypes of RelationshipsYXYXYYXXStrong relationshipsWeak relationships(continued)DCOVATypes of RelationshipsYXYXNo relationship(continued)DCOVAIntroduction to Regression AnalysisRegression analysis is used to:Predict the value of a dependent var
5、iable based on the value of at least one independent variableExplain the impact of changes in an independent variable on the dependent variableDependent variable:the variable we wish to predict or explainIndependent variable:the variable used to predict or explain the dependent variableDCOVASimple L
6、inear Regression ModelnOnly one independent variable,XnRelationship between X and Y is described by a linear functionnChanges in Y are assumed to be related to changes in XDCOVAii10iXYLinear componentSimple Linear Regression ModelPopulation Y intercept Population SlopeCoefficient Random Error termDe
7、pendent VariableIndependent VariableRandom Error componentDCOVA(continued)Random Error for this Xi valueYXObserved Value of Y for XiPredicted Value of Y for Xi ii10iXYXiSlope=1Intercept=0 iSimple Linear Regression ModelDCOVASimple Linear Regression Equation(Prediction Line)i10iXbbYThe simple linear
8、regression equation provides an estimate of the population regression lineEstimate of the regression interceptEstimate of the regression slopeEstimated (or predicted)Y value for observation iValue of X for observation iDCOVAThe Least Squares Methodb0 and b1 are obtained by finding the values that mi
9、nimize the sum of the squared differences between Y and :2i10i2ii)Xb(b(Ymin)Y(YminYDCOVAFinding the Least Squares EquationThe coefficients b0 and b1,and other regression results in this chapter,will be found using Excel or MinitabFormulas are shown in the text for those who are interestedDCOVAnb0 is
10、 the estimated mean value of Y when the value of X is zeronb1 is the estimated change in the mean value of Y as a result of a one-unit increase in XInterpretation of the Slope and the InterceptDCOVASimple Linear Regression ExamplenA real estate agent wishes to examine the relationship between the se
11、lling price of a home and its size(measured in square feet)nA random sample of 10 houses is selectednDependent variable(Y)=house price in$1000snIndependent variable(X)=square feetDCOVASimple Linear Regression Example:DataHouse Price in$1000s(Y)Square Feet(X)245140031216002791700308187519911002191550
12、4052350324245031914252551700DCOVASimple Linear Regression Example:Scatter PlotHouse price model:Scatter PlotDCOVASimple Linear Regression Example:Using Excel Data Analysis Function1.Choose Data2.Choose Data Analysis3.Choose RegressionDCOVASimple Linear Regression Example:Using Excel Data Analysis Fu
13、nction(continued)Enter Y range and X range and desired optionsDCOVASimple Linear Regression Example:Using PHStatAdd-Ins:PHStat:Regression:Simple Linear RegressionSimple Linear Regression Example:Excel OutputRegression StatisticsMultiple R0.76211R Square0.58082Adjusted R Square0.52842Standard Error41
14、.33032Observations10ANOVA dfSSMSFSignificance FRegression118934.934818934.934811.08480.01039Residual813665.56521708.1957Total932600.5000 CoefficientsStandard Errort StatP-valueLower 95%Upper 95%Intercept98.2483358.033481.692960.12892-35.57720232.07386Square Feet0.109770.032973.329380.010390.033740.1
15、8580The regression equation is:feet)(square 0.10977 98.24833 price houseDCOVASimple Linear Regression Example:Minitab OutputThe regression equation isPrice=98.2+0.110 Square Feet Predictor Coef SE Coef T PConstant 98.25 58.03 1.69 0.129Square Feet 0.10977 0.03297 3.33 0.010 S=41.3303 R-Sq=58.1%R-Sq(
16、adj)=52.8%Analysis of Variance Source DF SS MS F PRegression 1 18935 18935 11.08 0.010Residual Error 8 13666 1708Total 9 32600The regression equation is:house price=98.24833+0.10977(square feet)DCOVASimple Linear Regression Example:Graphical RepresentationHouse price model:Scatter Plot and Predictio
17、n Linefeet)(square 0.10977 98.24833 price houseSlope=0.10977Intercept=98.248 DCOVASimple Linear Regression Example:Interpretation of bob0 is the estimated mean value of Y when the value of X is zero(if X=0 is in the range of observed X values)Because a house cannot have a square footage of 0,b0 has
18、no practical applicationfeet)(square 0.10977 98.24833 price houseDCOVASimple Linear Regression Example:Interpreting b1b1 estimates the change in the mean value of Y as a result of a one-unit increase in XnHere,b1=0.10977 tells us that the mean value of a house increases by.10977($1000)=$109.77,on av
19、erage,for each additional one square foot of sizefeet)(square 0.10977 98.24833 price houseDCOVA317.850)0.1098(200 98.25(sq.ft.)0.1098 98.25 price housePredict the price for a house with 2000 square feet:The predicted price for a house with 2000 square feet is 317.85($1,000s)=$317,850Simple Linear Re
20、gression Example:Making PredictionsDCOVASimple Linear Regression Example:Making PredictionsnWhen using a regression model for prediction,only predict within the relevant range of dataRelevant range for interpolationDo not try to extrapolate beyond the range of observed XsDCOVAMeasures of VariationnT
21、otal variation is made up of two parts:SSE SSR SSTTotal Sum of SquaresRegression Sum of SquaresError Sum of Squares2i)YY(SST2ii)YY(SSE2i)YY(SSRwhere:=Mean value of the dependent variableYi=Observed value of the dependent variable =Predicted value of Y for the given Xi valueiYYDCOVAnSST=total sum of
22、squares (Total Variation)nMeasures the variation of the Yi values around their mean YnSSR=regression sum of squares (Explained Variation)nVariation attributable to the relationship between X and YnSSE=error sum of squares (Unexplained Variation)nVariation in Y attributable to factors other than X(co
23、ntinued)Measures of VariationDCOVA(continued)XiYXYiSST=(Yi-Y)2SSE=(Yi-Yi)2 SSR=(Yi-Y)2 _Y YY_Y Measures of VariationDCOVAnThe coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variablenThe coefficient of det
24、ermination is also called r-square and is denoted as r2Coefficient of Determination,r21r02note:squares of sum total squares of sum regression2SSTSSRrDCOVAr2=1Examples of Approximate r2 ValuesYXYXr2=1Perfect linear relationship between X and Y:100%of the variation in Y is explained by variation in XD
25、COVAExamples of Approximate r2 ValuesYXYX0 r2 1Weaker linear relationships between X and Y:Some but not all of the variation in Y is explained by variation in XDCOVAExamples of Approximate r2 Valuesr2=0No linear relationship between X and Y:The value of Y does not depend on X.(None of the variation
展开阅读全文