商务统计学英文版教学课件第3章.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《商务统计学英文版教学课件第3章.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 商务 统计学 英文 教学 课件
- 资源描述:
-
1、Numerical Descriptive MeasuresChapter 3In this chapter,you learn to:nDescribe the properties of central tendency,variation,and shape in numerical datanConstruct and interpret a boxplotnCompute descriptive summary measures for a populationnCalculate the covariance and the coefficient of correlationOb
2、jectivesSummary Definitions The central tendency is the extent to which the values of a numerical variable group around a typical or central value.The variation is the amount of dispersion or scattering away from a central value that the values of a numerical variable show.The shape is the pattern o
3、f the distribution of values from the lowest value to the highest value.DCOVAMeasures of Central Tendency:The MeannThe arithmetic mean(often just called the“mean”)is the most common measure of central tendencynFor a sample of size n:Sample sizenXXXnXXn21n1iiObserved valuesThe ith valuePronounced x-b
4、arDCOVAMeasures of Central Tendency:The Mean (cont)nThe most common measure of central tendencynMean=sum of values divided by the number of valuesnAffected by extreme values(outliers)11 12 13 14 15 16 17 18 19 20Mean=13 11 12 13 14 15 16 17 18 19 20Mean=1431565551413121114157052041312111DCOVAMeasure
5、s of Central Tendency:The MediannIn an ordered array,the median is the“middle”number(50%above,50%below)nLess sensitive than the mean to extreme valuesMedian=13Median=1311 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20DCOVAMeasures of Central Tendency:Locating the MediannThe location of the
6、 median when the values are in numerical order(smallest to largest):nIf the number of values is odd,the median is the middle numbernIf the number of values is even,the median is the average of the two middle numbersNote that is not the value of the median,only the position of the median in the ranke
7、d datadataorderedtheinposition21npositionMedian21nDCOVAMeasures of Central Tendency:The ModenValue that occurs most oftennNot affected by extreme valuesnUsed for either numerical or categorical datanThere may be no modenThere may be several modes0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Mode=90 1 2 3 4 5 6
8、No ModeDCOVAMeasures of Central Tendency:Review ExampleHouse Prices:$2,000,000$500,000$300,000$100,000$100,000Sum$3,000,000 Mean:($3,000,000/5)=$600,000 Median:middle value of ranked data =$300,000 Mode:most frequent value =$100,000DCOVAMeasures of Central Tendency:Which Measure to Choose?The mean i
9、s generally used,unless extreme values(outliers)exist.The median is often used,since the median is not sensitive to extreme values.For example,median home prices may be reported for a region;it is less sensitive to outliers.In some situations it makes sense to report both the mean and the median.DCO
10、VAMeasures of Central Tendency:SummaryCentral TendencyArithmetic MeanMedianModenXXnii1Middle value in the ordered arrayMost frequently observed valueDCOVASame center,different variationMeasures of VariationnMeasures of variation give information on the spread or variability or dispersion of the data
11、 values.VariationStandard DeviationCoefficient of VariationRangeVarianceDCOVAMeasures of Variation:The Range Simplest measure of variation Difference between the largest and the smallest values:Range=Xlargest Xsmallest0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Range=13-1=12Example:DCOVAMeasures of Variation
12、:Why The Range Can Be Misleading Does not account for how the data are distributed Sensitive to outliers7 8 9 10 11 12Range=12-7=57 8 9 10 11 12Range=12-7=51,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,51,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,120Range=5-1=4Range=120-1=119DCOVAnAverage(appr
13、oximately)of squared deviations of values from the meannSample variance:Measures of Variation:The Sample Variance1-n)X(XSn1i2i2Where =arithmetic meann=sample sizeXi=ith value of the variable XXDCOVAnMost commonly used measure of variationnShows variation about the meannIs the square root of the vari
14、ancenHas the same units as the original datanSample standard deviation:Measures of Variation:The Sample Standard Deviation1-n)X(XSn1i2iDCOVAMeasures of Variation:The Standard DeviationSteps for Computing Standard Deviation1.Compute the difference between each value and the mean.2.Square each differe
15、nce.3.Add the squared differences.4.Divide this total by n-1 to get the sample variance.5.Take the square root of the sample variance to get the sample standard deviation.DCOVAMeasures of Variation:Sample Standard Deviation:Calculation ExampleSample Data (Xi):10 12 14 15 17 18 18 24 n=8 Mean=X=164.3
16、09571301816)(2416)(1416)(1216)(101n)X(24)X(14)X(12)X(10S22222222A measure of the“average”scatter around the meanDCOVAMeasures of Variation:Comparing Standard DeviationsMean=15.5 S=3.338 11 12 13 14 15 16 17 18 19 20 2111 12 13 14 15 16 17 18 19 20 21Data BData AMean=15.5 S=0.92611 12 13 14 15 16 17
17、18 19 20 21Mean=15.5 S=4.567Data CDCOVAMeasures of Variation:Comparing Standard DeviationsSmaller standard deviationLarger standard deviationDCOVAMeasures of Variation:Summary Characteristics The more the data are spread out,the greater the range,variance,and standard deviation.The more the data are
18、 concentrated,the smaller the range,variance,and standard deviation.If the values are all the same(no variation),all these measures will be zero.None of these measures are ever negative.DCOVAMeasures of Variation:The Coefficient of VariationnMeasures relative variationnAlways in percentage(%)nShows
展开阅读全文