用放缩法证明数列中的不等式课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《用放缩法证明数列中的不等式课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 用放缩法 证明 数列 中的 不等式 课件
- 资源描述:
-
1、 放缩法证明数列不等式放缩法证明数列不等式是数列中的难点内容,在近是数列中的难点内容,在近几几年的高考年的高考数列数列试题中都有考查试题中都有考查.放缩法灵活多变,技巧性放缩法灵活多变,技巧性要求较高,所谓要求较高,所谓“放大一点点就太大,缩小一点点又太放大一点点就太大,缩小一点点又太小小”,这就让同学们找不到头绪,摸不着规律,总觉得高这就让同学们找不到头绪,摸不着规律,总觉得高不可攀!高考命题专家说:不可攀!高考命题专家说:“放缩是一种能力放缩是一种能力.”如何把如何把握放缩的握放缩的“度度”,使得放缩,使得放缩“恰到好处恰到好处”,这正是放缩法,这正是放缩法的精髓和关键所在!的精髓和关键所
2、在!其实,任何事物都有其内在规律,其实,任何事物都有其内在规律,放放缩法也是缩法也是“有法可依有法可依”的的,本节课我们一起来研究数列问,本节课我们一起来研究数列问题中一些常题中一些常见见的放缩类型及方法,破解其思维过程,揭开的放缩类型及方法,破解其思维过程,揭开其神秘的面纱,领略和感受放缩法的无限魅力!其神秘的面纱,领略和感受放缩法的无限魅力!一一.放缩目标模型放缩目标模型可求和可求和2311111()2222nnN求证:例例1 1231232()2222nnnN求证:变变式式1 12311111()2 1212121nnN求证:变变式式2 2231232()2 122232nnnnN求证:
3、变变式式3 31(niiak k为常数)形形(一一)如如不等式左边可用等比数列前不等式左边可用等比数列前n项和公式求和项和公式求和.分析分析左边左边11(1)22112n112n 12311111()2222nnN求证:例例1 1表面是证数列不等式,表面是证数列不等式,实质是实质是数列求和数列求和不等式左边可用不等式左边可用“错位相减法错位相减法”求和求和.分析分析由错位相减法得由错位相减法得 222nn2231232()2222nnnN求证:变变式式1 1表面是证数列不等式,表面是证数列不等式,实质是实质是数列求和数列求和231232222nn左边不能直接求和,须先将其通项放缩后左边不能直接
4、求和,须先将其通项放缩后求和,如何放缩?求和,如何放缩?分析分析2311111()2 1212121nnN求证:变变式式2 2将通项放缩为将通项放缩为等比数列等比数列注意到注意到11212nn左边左边11(1)22112n112n 12311112222n左边不能直接求和,须先将其通项放缩后求左边不能直接求和,须先将其通项放缩后求和,如何放缩?和,如何放缩?分析分析注意到注意到222nn2231232()2 122232nnnnN求证:变变式式3 3231232222nn左边22nnnnn将通项放缩为将通项放缩为 错错位相减位相减模型模型用放缩法证明数列中的不等式用放缩法证明数列中的不等式【方
5、法总结之一方法总结之一】用放缩法证明数列中的不等式用放缩法证明数列中的不等式201319)11111()1 33 55 7(21)(21)2nnnN(广东文第(3)问求证:例例2 222211112()23nnN求证:变变式式1 12221117(201319(3)1()234nnN广东理第:问求证变变式式2 222211151()233nnN求证:变变式式3 3用放缩法证明数列中的不等式用放缩法证明数列中的不等式评注评注用放缩法证明数列中的不等式用放缩法证明数列中的不等式【方法总结之二方法总结之二】放缩法证明与数列求和有关的不等式的过程放缩法证明与数列求和有关的不等式的过程中,很多时候要中,
6、很多时候要“留一手留一手”,即采用即采用“有所保留有所保留”的方法,的方法,保留数列的第一项或前两项,从数列的第保留数列的第一项或前两项,从数列的第二项或第三项开始放缩二项或第三项开始放缩,这样才不致使结果放得过,这样才不致使结果放得过大或缩得过小大或缩得过小.用放缩法证明数列中的不等式用放缩法证明数列中的不等式牛刀小试牛刀小试(变式练习(变式练习1 1)*22211151()35(21)4nnN求证:证明证明21(21)n111(1)4n 114 254n1111111(1)()()42231nn 14(1)n n(2)n 2144nn111()41nn左边当当n=1时,不等式显然也成立时,
7、不等式显然也成立.用放缩法证明数列中的不等式用放缩法证明数列中的不等式2(1),(1)nnan nbn1122111512nnababab11(1)(21)nnabnn故故1111 111111()62 23341niiiabnn51122(1)5.12n(2)n 当当 时,有时,有 也成立也成立 1n 156121 11()212(11)nnnn用放缩法证明数列中的不等式用放缩法证明数列中的不等式na221nnna 1(1)3niiia a当当 时,有时,有 也成立也成立 1n 2322(1)(21)(21)(21)(22)iiiiiiiiaa 111211(2)(21)(21)2121ii
8、iiii21111111(1)2()()33(2)2 121212121niinnnia an用放缩法证明数列中的不等式用放缩法证明数列中的不等式常见的裂项放缩技巧:常见的裂项放缩技巧:)1(212n22112)1(2nnnnnnnnn)2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112nnnnnnnnnnnnnn)3()111(2)1(21212)1(1)(1)11(12n21210 nnnnnnnCCCCCnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn111)1(111)1(11111211212)12)(12(414444111112
展开阅读全文