物体的弹性医学物理学课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《物体的弹性医学物理学课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 物体 弹性 医学 物理学 课件
- 资源描述:
-
1、第二章 物体的弹性第二章 物体的弹性第二章 物体的弹性掌握掌握描述物体弹性的基本概念:形变、应变、描述物体弹性的基本概念:形变、应变、应力、模量。应力、模量。理解理解应力与应变的关系应力与应变的关系 。了解了解骨骼的力学特性和生物材料的黏弹性。骨骼的力学特性和生物材料的黏弹性。教学基本要求教学基本要求第二章 物体的弹性物体形变物体形变形变定义:形变定义:物体在外力作用下发生形状和大物体在外力作用下发生形状和大小的改变。小的改变。形变类型:形变类型:从弹性体的恢复情况划分有弹性从弹性体的恢复情况划分有弹性形变、范性(塑性)形变。从形状变化情况形变、范性(塑性)形变。从形状变化情况划分有伸长、缩短
2、、切变、扭转、弯曲等形划分有伸长、缩短、切变、扭转、弯曲等形变。伸长和缩短合称线变。线变和切变是弹变。伸长和缩短合称线变。线变和切变是弹性形变的两种基本类型,其他形变实际上是性形变的两种基本类型,其他形变实际上是这两种形变的复合。这两种形变的复合。第二章 物体的弹性第一节第一节 线应变与正应力线应变与正应力一、线应变一、线应变 对一细长物体施加拉力F使之拉伸,其伸长变化率称为线应变线应变:0ll ll若物体被拉伸 0,0,0 0;若物体被压缩 0,0,0 0。(2-1)第二章 物体的弹性1.内力内力 物体内部任一横截面两边材料之间存在的一种相互作用力。2.张力张力 垂直于任一截面的拉伸内力。3
3、.压力压力 垂直于任一截面的相互挤压的内力。二、正应力二、正应力第二章 物体的弹性4.正应力正应力 如果是均匀物体,则张力F与横截面面积S之比,称为该横截面上的正应力正应力,用表示:(2-2)如果是物体受力不均匀或者内部材料不均匀的一般情况,可以取一个微小的面元,其面积为 dS,设这个面元上的张力为 dF,则该面元上的正应力表示为(2-3)正应力正应力分为张应力张应力(0 0)与压应力压应力(0 0).SF SFSFSddlim0 第二章 物体的弹性1.低碳钢正应力低碳钢正应力与线应变的关系与线应变的关系 从图上可将拉伸分为弹性、屈服、硬化和颈缩四个阶段:三、正应力与线应变的关系三、正应力与线
4、应变的关系第二章 物体的弹性弹性阶段弹性阶段 曲线中OA段,A点称为正比极限正比极限。B点的正应力叫做弹性极限。屈服阶段屈服阶段 过了C点是屈服阶段,这一阶段的最大正应力为屈服强度。硬化阶段硬化阶段 从D点开始是硬化阶段,只有加大正应力,才能使物体进一步伸长,此即材料的硬化;E点的正应力叫做强度极限;第二章 物体的弹性颈缩阶段颈缩阶段 过了E点是颈缩阶段;F点称为断裂点。拉伸时,断裂点的正应力称为材料的抗张强度抗张强度。压缩时,断裂点的正应力称为材料的抗压强度抗压强度。BF是材料的范性(塑性)范围范性(塑性)范围。如果F点距B点较远,则这种材料能产生较大的范性形变,表示它具有展性展性。如果F点
5、距B点较近,则这种材料能产生较小的范性形变,材料表现为脆性脆性。第二章 物体的弹性实验表明:在正比极限内,正应力与线应变成正比,即(2-4)Y Y称为杨氏模量杨氏模量。结合(2-1)和(2-2)式(2-5)即为胡克定律胡克定律 其中 Y lSFlllSFY 00/lkllYSF 00lYSk 第二章 物体的弹性杨氏模量 Y 只与材料的性质有关,它反映材料抵抗线变的能力,其值越大物体越不容易变形。几种材料的杨氏模量见表材料材料低低碳碳钢钢铸铸铁铁花花岗岗岩岩铅铅骨骨/拉伸拉伸骨骨/压压缩缩木木材材腱腱橡胶橡胶血管血管杨氏模量杨氏模量Y 109Nm-219678501716910 0.02 0.0
6、010.0002第二章 物体的弹性2.骨作为一种弹性材料,在正比极限范围之内,骨作为一种弹性材料,在正比极限范围之内,它的正应力和线应变成正比关系它的正应力和线应变成正比关系 。骨骼在被拉伸时会伸长、变细(如人进行悬垂动作)。骨骼在被压缩时(如举重)能够刺激骨的生长,促进骨折愈合;但压缩作用较大时能使骨缩短、变粗。拉伸与压缩的极限应力分别为 134 MNm-2 与170MNm-2湿润而致密的成人四肢骨的正应力湿润而致密的成人四肢骨的正应力-线线应变曲线应变曲线第二章 物体的弹性3.主动脉弹性组织的正应力与线应变关系并不服主动脉弹性组织的正应力与线应变关系并不服从胡克定律,曲线没有直线部分。从胡
7、克定律,曲线没有直线部分。主动脉弹性组织的弹性极限十分接近断裂点,这说明只要它没有被拉断,在外力消失后都能恢复原状。弹性组织应变可达到 1.0,这说明它可以伸长到原有长度的两倍,这一点和橡胶皮比较类似。主动脉弹性组织的正应力主动脉弹性组织的正应力-线应变曲线线应变曲线第二章 物体的弹性 例例2-1 如图所示,一根结构均匀的弹性杆,密度为 ,杨氏模量为Y Y。将此杆竖直悬挂,使上端固定,下端自由。求杆中的应力和应变。解:解:设杆在悬挂时的长为 l,横截面积为 S。以悬挂点为原点向下作Ox轴,如图所示,计算坐标为x(0 xl)的横截面处的应力和应变。SF 由 得这个截面处的应力为:gxlSSgxl
8、)()(又因为 ,Y YgxlY)(所以这个截面处的应变为:第二章 物体的弹性例例2-2股骨是大腿中的主要骨骼。如果成年人股骨的最小截面积是 610-4 m 2,问受压负荷为多大时将发生碎裂?又假定直至碎裂前,应力-应变关系还是线性,试求发生碎裂时的应变。(抗压强度=17 107 Nm-2)解:解:导致骨碎裂的作用力 根据骨的杨氏模量 Y=0.9 1010 Nm-2,可求碎裂时的应变 74517 106 101.02 10 NFS%9.1019.0109.01017107 Y 第二章 物体的弹性 平面弯曲是指物体具有一个纵向的对称面,所有外力的合力都集中在这个对称面里。在两个支架上放置一横梁。
9、当横梁受到一个垂直于轴线的横向压力 P 时,如图(b)所示,横梁发生弯曲。显然,凸出的一侧被拉伸,凹进的一侧被压缩。四、弯曲四、弯曲第二章 物体的弹性第二节第二节 切应变与切应力切应变与切应力一、切应变一、切应变 当物体两端同时受到反向平行的拉力 F 作用时会发生形变,如图所示,其内部与该截面平行的平面发生错位,使原来与这些截面正交的线段变得不再正交,这样的形变叫做切应变切应变。发生错位的这些平面叫做剪切面,平行于这个平面的外力叫做剪切力。剪切的程度以x/d比值来衡量,这一比值称为切应变():(2-6)g tdx 第二章 物体的弹性二、切应力二、切应力 弹性体发生切变时,任一剪切面两边材料之间
展开阅读全文