书签 分享 收藏 举报 版权申诉 / 68
上传文档赚钱

类型键结轨道理论在量子半导体之应用与计算课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:3967711
  • 上传时间:2022-10-30
  • 格式:PPT
  • 页数:68
  • 大小:1.11MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《键结轨道理论在量子半导体之应用与计算课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    轨道 理论 量子 半导体 应用 计算 课件
    资源描述:

    1、The Application and Calculation of Bond Orbital Model on Quantum Semiconductor鍵結軌道理論在量子半導體之應用與計算IntroductionWhy is the choosing the BOM?a hybrid or link between the k.p and the tight-binding methodscombining the virtues of the two above approaches -the computational effort is comparable to the k.p m

    2、ethod -avoiding the tedious fitting procedure like the tight-binding method -it is adequate for ultra-thin superlattice -the boundary condition between materials is treated in the straight-forward manner -its flexibility to accommodate otherwise awkward geometriesThe improvement of the bond orbital

    3、model(BOM):the(hkl)-oriented BOM Hamiltonian the BOM Hamiltonian with the second-neighbor interaction the BOM in the antibonding orbital framework the BOM with microscopic interface perturbation(MBOM)the k.p formalism from the BOMBond Orbital ModelWhat is the bond orbital model?a tight-binding-like

    4、framework with the s-and p-like basis orbital the interaction parameters directly related to the Luttinger parametersZinc-blende Lattice Structure:2/a)1,1,0(),1,0,1(),0,1,1(The BOM matrix elements:,BOM)(Hk)(e,jijjRRkwhere:The interaction parameters,Es and Ep:on-site parametersEss,Esx,Exx,Exy,and Ezz

    5、:the nearest-neighbor interaction parametersThe BOM matrix:where)k(IEEHsssss),2/acos2/acos2/acos2/acos2/acos2/a(cos4)(zyzxyxkkkkkkIk),2/acos2/acos2/acos2/a(cos2/asin4kkkkkiEHzyxsxs),2/acos2/acos2/acos2/a(cos2/acos)(4)k(kkkkkEEIEEHzyxzzxxzzp)(2/asin2/asin4kkEHxywithssHsxHsyHszH*sxHxxHxyHxzH*syHxyHyyH

    6、yzH*szHxzHyzHzzHH(k)=Taking Taylor-expansion on the BOM matrix:(up to the second order)where,12EEEsssc,4E8EEEzzxxpV,2/a)EE(2xxzz1,2/a)EE(2xxzz2.aE2xy3andH(k)=kaEE22ssczsxakE4ixsxakE4i2221kkExvyxkk3zxkk3ysxakE4iyxkk32221kkEyvzykk3zxkk3zykk32221kkEzvxsxakE4i-ysxakE4i-zsxakE4i-Relations between BOM par

    7、ameters and Luttinger parametersVBMCVBM32/)8/X12(EE022sxhlgR 32/)8/X12(EE022sxhlgR g2xy03xyE/)E166ER24/X)/(3EE16Eg2sx01xxhlR8/XEExxzzhl2/XE12EExxphlvggcEERmm1264EE2sx00ss/303xy6ER021xx)4(ER021zz)8(ER01p12EERvBulk Bandstructure:(001)-orientationSuperlattice Bandstructure:(001)-orientationThe orthogon

    8、al transformation matrix:cossinsincoscosTsinsincossincoscos0sinwhere the angles and are the polar and azimuthal angles of the new growth axis relative to the primary crystallographic axes.)/(tan221lkh)/(tan1hkBulk InAs Bandstructure:(111),(110),(112),(113),and(115)-orientationInAs/GaSb Superlattice

    9、Bandstructure:(111),(110),(112),(113),and(115)-orientationThe second-neighbor bond orbital(SBO)model:WhereandT)EE(TEExx)1(zzszz),(zyxC)VV(CVExx)2(zzszz),2/akcos()2/ak)cos(2/aksin(4Tzyxxi),2/akcos()2/ak)cos(2/aksin(4Tzxyyi),2/akcos()2/ak)cos(2/aksin(4Tzzyxi),2/akcos()2/ak)cos(2/akcos(4Tzyxxx),2/akcos

    10、()2/ak)cos(2/akcos(4Tzxyyy),2/akcos()2/ak)cos(2/akcos(4Tzzyxz),2/aksin()2/aksin(4Tyxxy),2/aksin()2/aksin(4Tzxxz),2/aksin()2/aksin(4Tzyyz,2/)TTT(Tzzyyxxs),aksin(2Sxxi),aksin(2Syyi),aksin(2Szzi),akcos(2Cxx),akcos(2Cyy),akcos(2Czz.CCCCzyxssssssssCVTEExsxxsxSVTEysxysxSVTEzsxzsxSVTE*xsx*xsxSVTE(2)x(1)xpE

    11、EExyxyTExzxyTE*ysx*ysxSVTExyxyTE(2)y(1)ypEEEyzxyTE*zsx*zsxSVTExzxyTEyzxyTE(2)z(1)zpEEEH(k)=Bulk Bandstructure:With the Second Nearest Neighbor Interaction:Bulk Bandstructure in the Antibonding Orbital Model:Bond Orbital Model with MicroscopicEffects For the common atom(CA)heterostructure eg:(AlGa)As

    12、/GaAs,InAs/GaAs For the no common atom(NCA)heterostructure eg:InAs/GaSb,(InGa)/As/InP -InAs/GaSb with In-Sb and Ga-As heterobonds at the interfaces -(InGa)As/InP with(InGa)-P and In-As heterobonds at the interfacesThe(001)InAs/GaSb superlattice:the planes of atoms are stacked in the growth direction

    13、 as followsGa Sb Ga Sb In As In Asfor the one interface;and In As In As Ga Sb Ga Sbfor the next interface.The extracting of microscopic information:the s-and p-like bond orbitals expanded in terms of the tetrahedral(anti)bonding orbitalsand instead of scalar potential by potential operatorthis is th

    14、e so-called modified bond orbital model(MBOM),aSR=(+),1,aR2,aR3,aR4,aR21=(+-),bXR211,bR2,bR3,bR4,bR=(-+-),bYR211,bR2,bR3,bR4,bR=(-+),bZR211,bR2,bR3,bR4,bR(R)+),41)(iiUVia,Ria,R)()(RiVib,Rib,RThe potential term of the MBOM:a potential matrix form,but not a scalar potential VVVVVVVVVVzxzsyxysxxxssxssz

    15、R)(44VVVVVVVVzzzyyzyyxzxyszsy V4X4(Rz)=V+)(44ZRVU21000)(44ZRVV21V2100V21000V21V2100InAs/GaSb Superlattice Bandstructure:(calculated with the BOM and MBOM)Orientation Dependence of InterfaceInversion Asymmetry Effect on InGaAs/InP Quantum WellsInversion asymmetry effect:the microscopic crystal struct

    16、ure:Dresselhaus effect the macroscopic confining potential:Rashba effect the inversion asymmetry between two interfaces:NCA heterostructures -the zero-field spin splitting -in-plane anisotropyThe 73-wide(25 monolayers)(001)InGaAs/InP QW:Aand the planes of atoms are stacked in the growth direction as

    17、 follows:M+1 C D C D C D A B A B A B Mfor the(InGa)P-like interface;and N+1 A B A B A B C D C D C D Nfor the InAs-like interface,where A=(InGa),B=As,C=In,and D=P.The Mth(or Nth)monolayer is located at the left(or right)interface,where N=M+25.,4321bbbbRRRRR21212121X,4321bbbbRRRRR21212121Y,4321aaaaRRR

    18、RR21212121S,4321bbbbRRRRR21212121ZWhere Rz is the z component of lattice site r,i.e.,R=R/+Rz,and also the U(for the conduction band)and the V(for the valence band)denote the difference of potential energy between the heterobond species and the host material at the interfaces.)R(Z66VU2100000U2100000v

    19、32iv210000v21v32i0000v21v32i0000v21v32i0000(001)InGaAs/InP Quantum Well Bandstructure:(calculated with the BOM and MBOM)Spin Splitting of the Lowest Conduction Subband:(001)InGaAs/InP Quantum Well)When the in-plane wave vector moves around the circle(=0 2),the mixing elements in Eq.(4.2)should be st

    20、rictly written as)22(exp)(321)(2cos2(sin321iVVifor the(3,5)and(4,6)matrix elements and)22(exp)(321)(2cos2(sin321iVVifor the(5,3)and(6,4)matrix elements.Therefore,the mixing strength depends on the azimuthal angle Moreover,the and terms equal to 1 for or and 1 for or .)22(expi)22(expi4/34/74/4/5The 7

    21、1-wide(21 monolayers)(111)InGaAs/InP QW:The same order of atomic planes as the(001)QW A and,X,432bbbRRRR626161,Y,32bbRRR2121.,Z,4321bbbbRRRRR32132132123,4321aaaaRRRRR21212121S the heterobonds in the 111 growth direction:the heterobonds are the remaining three bonds other than the bond along the 111

    22、direction:)R(Z66Vv2100000v2100000000000U410000000000U41000000)R(Z66V000000000000000000000000000000U43U43vvv21v21(111)InGaAs/InP Quantum Well Bandstructure:(calculated with the BOM and MBOM)Spin Splitting of the Lowest Conduction Subband:(111)InGaAs/InP Quantum Well)The 73-wide(35 monolayers)(110)InG

    23、aAs/InP QW:=+=-+-=-+and =-S,R211,aR212,aR213,aR214,aRX,R211,bR212,bR213,bR214,bRY,R212,bR213,bRZ,R211,bR214,bRacross perfect(110)interfaces,planes of atoms are arranged in the order of:M+1 D C D C B A B A C D C D A B A B Mfor the left interface and N A B A B C D C D B A B A D C D C N+1for the right

    24、interface,where N=M+35 where the upper sign is used for the Mth and Nth monolayer,and the lower sign is used for the(M+1)th and(N+1)th monolayer.)R(Z66V000000000U410000000000U41000v81v621v83v381v381v83v381v81v621v381v621v621(110)InGaAs/InP Quantum Well Bandstructure:(calculated with the BOM and MBOM

    25、)Spin Splitting of the Lowest Conduction Subband:(110)InGaAs/InP Quantum Well)Symmetry point group of QWs.MicroscopicBOMBulkTdOhCAQW(001)D2dD4hNCAQW(001)C2vD4hNCAQW(111)C3vD3dNCAQW(110)C1h or C1D2hDresselhaus-like Spin Splitting Dresselhaus effect:The degeneracy bands of the zinc-blends bulk are lif

    26、ted except for the wave vector along the and directions,and this is the so-called Dresselhaus effect.Subband Structure of(110)InAs/GaSb Superlattice:(calculated with the BOM and MBOM)MBOM Bandstructure of InAs/GaSb Superlattice(grown on the(001),(111),(113),and(115)-orientation)Microscopic Interface

    27、 Effect on(Anti)crossing Behavior andSemiconductor-semimetal Transition inInAs/GaSb Superlattices This MBOM model is based on the framework of the bond orbital model(BOM)and combines the concept of the heuristic Hbf model to include the microscopic interface effect.The MBOM provides the direct insig

    28、ht into the microscopic symmetry of the crystal chemical bonds in the vicinity of the heterostructure interfaces.Moreover,the MBOM can easily calculate various growth directions of heterostructures to explore the influence of interface perturbation.In this chapter,by applying the proposed MBOM,we wi

    29、ll calculate and discuss the(anti)crossing behavior and the semiconductor to semimetal transition on InAs/GaSb SLs grown on the(001)-,(111)-,and(110)-oriented substrates.The effect of interface perturbation on InAs/GaSb will be studied in detail.(Anti)crossing Behavior of InAs/GaSb Superlattice(001)

    30、Semimetal Phenomenon:(calculated with the BOM and MBOM)(111)Semimetal Phenomenon:(calculated with the BOM and MBOM)(110)Semimetal Phenomenon:(calculated with the BOM and MBOM)k.p Finite Difference Methodthe BOM eigenfunctions must be Bloch functions,which can be expressed as where the notation is us

    31、ed for an-like(=s,x,y,z)bond orbital located at a fcc lattice site R,k is the wave vector,and N is the total number of fcc lattice points.the BOM matrix elements with the bond-orbital basis(without spin-orbit coupling)are given by(in k-space)Where is the relative position vector of the lattice site

    32、R to the origin and (see chapter 2)is the interaction parametertaking the Taylor-expansion on the BOM Hamiltonian and omitting terms higher than the second order in k,the general kp formalism is easily obtained,whose matrix elements can be written as 11,1,eNRkRkRiR,kkk,H,)(H,BOM)(e,jijjRRk)(RRRjR,j2

    33、11)(H,kpk2)(jRk).(,jjiRRkthe kinetic term of the usual kp Hamiltonian in the basis )can be written as,23232121u),232323212321uuuCT0T00S0000000)(kHpk*S*T3/S3/*S*TS*B*C3/S*C3/*S*SRRP+QBP-QP-Q*B-C-BP+Qwhere the superscript*means Hermitian conjugate,P=Ev(2Exx+Ezz)/3a2k2,Q=(Exx Ezz),a2(k2-)/12,R=Ec Essa2

    34、k2S=Esxa(kx+),T=Esx /,B=Exya2(),C=(Exx Ezz)()/4 Exy ,andEc=Es+12Ess,Ev=Ep+8Exx+4 Ezz.2k3z22iyik8 izka6xkyik3/zk2xk2xkiyxkk3/a2the time-independent equation can be expressed as a function of kz,that is F=EF With the replacement of kz by ,this equation can be expressed as =and =the Schrdinger equation

    35、 can be written in the layer-orbital basis as where is the interaction between and layers 2201000zzkHkHHZi/22201 000ZHZiHHF=EF)(lZZZFhFFll211)(22lZZZF,2211hFFFlll0FHFHFH1111,lllllllll,Hlll lThe k.p finite difference methodOptimum Step Length in the KPFD Methodthe -dependent terms of the kp Hamiltoni

    36、an can be written as and where is the spacing of monolayers along the growth direction the replacement of by and then treated by the finite-difference calculation,we have and where is the pseudo-layer,the step length h is the spacing between two adjacent pseudo-layers,and F is the corresponding stat

    37、e function.The reason of the optimum step lengthzkzR)cos1(22222zzzzRkmRmk)2(222zzzzRikRikzeemR=zzzzzzRkRPPksin),(2zzzzRikRikzzeeiRP=zkZi/),(211llzlzFFihPZFiP)2(221122222llllFFFmhZFmlthe Schrdinger equation solved by the KPFD method can be written as where is the interaction between and layers;the in

    38、terger n is 1 for the(001)and(111)samples,2 for the(110)and(113)samples,3 for the (112)and(115)samples,etc.That is to say,the on-site and 12 nearest-neighbor bond orbitals belong respectively to(2n+1)layers,which are easily classified according to the longitudinal component of the bond-orbital posit

    39、ion vector.The step length between the on-site layer and the nearest-,second-,or third-neighbor interaction layer is 1ML,2ML,or 3ML spacing in the longitudinal direction,respectively.,0FHFHFH,n1,jlljlljjljllllllll,HllMulti-step Length in the(110)KPFD Method:Multi-step Length in the(112)KPFD Method:M

    40、ulti-step Length in the(113)KPFD Method:Multi-step Length in the(115)KPFD Method:InAs Bulk Bandstructure(calculated with the kp and SBO method)InAs Bulk Bandstructure(calculated with the SBO and KPSFD method)Anisotropic Optical Matrix Elements inQuantum Wells with Various SubstrateOrientationsThe(11

    41、N)44 Luttinger Hamiltonian at the Brillouin-zone center(k1=k2=0)Hk.p(k1=k2=0)=(Ep+8Exx+4Ezz)-+where a is the lattice constant,is the angle between the z and X3 axes,which is equal to 1000010000100001)EE2(34k4azzxx232)32-sin23-sin2)(EE(42zzxx)32-sin3-sin4(E42xy1000010000100001)sin23-)(1sin31)(E2E(E2x

    42、yzzxx0cos2sin0cos200sinsin00cos20sincos20).2N/N(cos21the optical transition matrix element between the conduction and the valence bands can be written as where is the momentum operator and is the unit polarization vector.the in-plane optical anisotropy can be calculated as whereand are the squared matrix elements for the polarization parallel and perpendicular to ,respectively.i/,VieCM,22|22|MMMM2|M2M101Anisotropic Optical Matrix Elements(in the(11N)-orientation

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:键结轨道理论在量子半导体之应用与计算课件.ppt
    链接地址:https://www.163wenku.com/p-3967711.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库