键结轨道理论在量子半导体之应用与计算课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《键结轨道理论在量子半导体之应用与计算课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 轨道 理论 量子 半导体 应用 计算 课件
- 资源描述:
-
1、The Application and Calculation of Bond Orbital Model on Quantum Semiconductor鍵結軌道理論在量子半導體之應用與計算IntroductionWhy is the choosing the BOM?a hybrid or link between the k.p and the tight-binding methodscombining the virtues of the two above approaches -the computational effort is comparable to the k.p m
2、ethod -avoiding the tedious fitting procedure like the tight-binding method -it is adequate for ultra-thin superlattice -the boundary condition between materials is treated in the straight-forward manner -its flexibility to accommodate otherwise awkward geometriesThe improvement of the bond orbital
3、model(BOM):the(hkl)-oriented BOM Hamiltonian the BOM Hamiltonian with the second-neighbor interaction the BOM in the antibonding orbital framework the BOM with microscopic interface perturbation(MBOM)the k.p formalism from the BOMBond Orbital ModelWhat is the bond orbital model?a tight-binding-like
4、framework with the s-and p-like basis orbital the interaction parameters directly related to the Luttinger parametersZinc-blende Lattice Structure:2/a)1,1,0(),1,0,1(),0,1,1(The BOM matrix elements:,BOM)(Hk)(e,jijjRRkwhere:The interaction parameters,Es and Ep:on-site parametersEss,Esx,Exx,Exy,and Ezz
5、:the nearest-neighbor interaction parametersThe BOM matrix:where)k(IEEHsssss),2/acos2/acos2/acos2/acos2/acos2/a(cos4)(zyzxyxkkkkkkIk),2/acos2/acos2/acos2/a(cos2/asin4kkkkkiEHzyxsxs),2/acos2/acos2/acos2/a(cos2/acos)(4)k(kkkkkEEIEEHzyxzzxxzzp)(2/asin2/asin4kkEHxywithssHsxHsyHszH*sxHxxHxyHxzH*syHxyHyyH
6、yzH*szHxzHyzHzzHH(k)=Taking Taylor-expansion on the BOM matrix:(up to the second order)where,12EEEsssc,4E8EEEzzxxpV,2/a)EE(2xxzz1,2/a)EE(2xxzz2.aE2xy3andH(k)=kaEE22ssczsxakE4ixsxakE4i2221kkExvyxkk3zxkk3ysxakE4iyxkk32221kkEyvzykk3zxkk3zykk32221kkEzvxsxakE4i-ysxakE4i-zsxakE4i-Relations between BOM par
7、ameters and Luttinger parametersVBMCVBM32/)8/X12(EE022sxhlgR 32/)8/X12(EE022sxhlgR g2xy03xyE/)E166ER24/X)/(3EE16Eg2sx01xxhlR8/XEExxzzhl2/XE12EExxphlvggcEERmm1264EE2sx00ss/303xy6ER021xx)4(ER021zz)8(ER01p12EERvBulk Bandstructure:(001)-orientationSuperlattice Bandstructure:(001)-orientationThe orthogon
8、al transformation matrix:cossinsincoscosTsinsincossincoscos0sinwhere the angles and are the polar and azimuthal angles of the new growth axis relative to the primary crystallographic axes.)/(tan221lkh)/(tan1hkBulk InAs Bandstructure:(111),(110),(112),(113),and(115)-orientationInAs/GaSb Superlattice
9、Bandstructure:(111),(110),(112),(113),and(115)-orientationThe second-neighbor bond orbital(SBO)model:WhereandT)EE(TEExx)1(zzszz),(zyxC)VV(CVExx)2(zzszz),2/akcos()2/ak)cos(2/aksin(4Tzyxxi),2/akcos()2/ak)cos(2/aksin(4Tzxyyi),2/akcos()2/ak)cos(2/aksin(4Tzzyxi),2/akcos()2/ak)cos(2/akcos(4Tzyxxx),2/akcos
10、()2/ak)cos(2/akcos(4Tzxyyy),2/akcos()2/ak)cos(2/akcos(4Tzzyxz),2/aksin()2/aksin(4Tyxxy),2/aksin()2/aksin(4Tzxxz),2/aksin()2/aksin(4Tzyyz,2/)TTT(Tzzyyxxs),aksin(2Sxxi),aksin(2Syyi),aksin(2Szzi),akcos(2Cxx),akcos(2Cyy),akcos(2Czz.CCCCzyxssssssssCVTEExsxxsxSVTEysxysxSVTEzsxzsxSVTE*xsx*xsxSVTE(2)x(1)xpE
11、EExyxyTExzxyTE*ysx*ysxSVTExyxyTE(2)y(1)ypEEEyzxyTE*zsx*zsxSVTExzxyTEyzxyTE(2)z(1)zpEEEH(k)=Bulk Bandstructure:With the Second Nearest Neighbor Interaction:Bulk Bandstructure in the Antibonding Orbital Model:Bond Orbital Model with MicroscopicEffects For the common atom(CA)heterostructure eg:(AlGa)As
12、/GaAs,InAs/GaAs For the no common atom(NCA)heterostructure eg:InAs/GaSb,(InGa)/As/InP -InAs/GaSb with In-Sb and Ga-As heterobonds at the interfaces -(InGa)As/InP with(InGa)-P and In-As heterobonds at the interfacesThe(001)InAs/GaSb superlattice:the planes of atoms are stacked in the growth direction
13、 as followsGa Sb Ga Sb In As In Asfor the one interface;and In As In As Ga Sb Ga Sbfor the next interface.The extracting of microscopic information:the s-and p-like bond orbitals expanded in terms of the tetrahedral(anti)bonding orbitalsand instead of scalar potential by potential operatorthis is th
14、e so-called modified bond orbital model(MBOM),aSR=(+),1,aR2,aR3,aR4,aR21=(+-),bXR211,bR2,bR3,bR4,bR=(-+-),bYR211,bR2,bR3,bR4,bR=(-+),bZR211,bR2,bR3,bR4,bR(R)+),41)(iiUVia,Ria,R)()(RiVib,Rib,RThe potential term of the MBOM:a potential matrix form,but not a scalar potential VVVVVVVVVVzxzsyxysxxxssxssz
15、R)(44VVVVVVVVzzzyyzyyxzxyszsy V4X4(Rz)=V+)(44ZRVU21000)(44ZRVV21V2100V21000V21V2100InAs/GaSb Superlattice Bandstructure:(calculated with the BOM and MBOM)Orientation Dependence of InterfaceInversion Asymmetry Effect on InGaAs/InP Quantum WellsInversion asymmetry effect:the microscopic crystal struct
16、ure:Dresselhaus effect the macroscopic confining potential:Rashba effect the inversion asymmetry between two interfaces:NCA heterostructures -the zero-field spin splitting -in-plane anisotropyThe 73-wide(25 monolayers)(001)InGaAs/InP QW:Aand the planes of atoms are stacked in the growth direction as
17、 follows:M+1 C D C D C D A B A B A B Mfor the(InGa)P-like interface;and N+1 A B A B A B C D C D C D Nfor the InAs-like interface,where A=(InGa),B=As,C=In,and D=P.The Mth(or Nth)monolayer is located at the left(or right)interface,where N=M+25.,4321bbbbRRRRR21212121X,4321bbbbRRRRR21212121Y,4321aaaaRRR
18、RR21212121S,4321bbbbRRRRR21212121ZWhere Rz is the z component of lattice site r,i.e.,R=R/+Rz,and also the U(for the conduction band)and the V(for the valence band)denote the difference of potential energy between the heterobond species and the host material at the interfaces.)R(Z66VU2100000U2100000v
19、32iv210000v21v32i0000v21v32i0000v21v32i0000(001)InGaAs/InP Quantum Well Bandstructure:(calculated with the BOM and MBOM)Spin Splitting of the Lowest Conduction Subband:(001)InGaAs/InP Quantum Well)When the in-plane wave vector moves around the circle(=0 2),the mixing elements in Eq.(4.2)should be st
20、rictly written as)22(exp)(321)(2cos2(sin321iVVifor the(3,5)and(4,6)matrix elements and)22(exp)(321)(2cos2(sin321iVVifor the(5,3)and(6,4)matrix elements.Therefore,the mixing strength depends on the azimuthal angle Moreover,the and terms equal to 1 for or and 1 for or .)22(expi)22(expi4/34/74/4/5The 7
21、1-wide(21 monolayers)(111)InGaAs/InP QW:The same order of atomic planes as the(001)QW A and,X,432bbbRRRR626161,Y,32bbRRR2121.,Z,4321bbbbRRRRR32132132123,4321aaaaRRRRR21212121S the heterobonds in the 111 growth direction:the heterobonds are the remaining three bonds other than the bond along the 111
展开阅读全文