人教高中数学选修2-3第一章第一节-分类加法计数原理与分步乘法计数原理(公开课)(共23张)课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教高中数学选修2-3第一章第一节-分类加法计数原理与分步乘法计数原理(公开课)(共23张)课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 选修 第一章 第一节 分类 加法 计数 原理 分步 乘法 公开 23 课件 下载 _其他版本_数学_高中
- 资源描述:
-
1、计数原理计数原理水若长流能成河,水若长流能成河,山以积石方为山以积石方为高高 从甲地到乙地有从甲地到乙地有3条路,从乙地到丁地有条路,从乙地到丁地有2条路;条路;从甲地到丙地有从甲地到丙地有3条路,从丙地到丁地有条路,从丙地到丁地有4条路,条路,问:从甲地到丁地有多少种走法?问:从甲地到丁地有多少种走法?要回答这个问题,就要用到计数的两个基本原理要回答这个问题,就要用到计数的两个基本原理导入新课导入新课甲地甲地乙地乙地丙地丙地丁地丁地 从甲地到乙地,可以乘火车,从甲地到乙地,可以乘火车,也可以乘汽车,一天中,火车有也可以乘汽车,一天中,火车有3班,汽车班,汽车有有2班那么一天中,乘坐这些交通工
2、具从班那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?甲地到乙地共有多少种不同的走法?因为一天中乘火车有因为一天中乘火车有3种走法,乘汽车有种走法,乘汽车有2种走法,每种走法,每一种走法都可以从甲地到乙地,所以共有:一种走法都可以从甲地到乙地,所以共有:325(种)(种)分类计数原理与分步计数原理分类计数原理与分步计数原理1、分类计数原理、分类计数原理(加法原理)(加法原理)做一件事情,完成它可以有做一件事情,完成它可以有n类类办法办法,在第一类办法中有在第一类办法中有m1种不同的种不同的方法方法,在第二类办法中有在第二类办法中有m2种不同的种不同的方法,方法,在第,在第n类办法
3、中有类办法中有mn种不同的方法。那么完成这件事共种不同的方法。那么完成这件事共有有N=m1+m2+mn种不同的方法。种不同的方法。有有60种取法。种取法。因此取法种数共有因此取法种数共有40+60=100(种)(种)例例1:两个袋子里分别装有两个袋子里分别装有40个红球,个红球,60个白个白球,从中任取一个球,有多少种取法?球,从中任取一个球,有多少种取法?解:取一个球的方法可以分成两类:解:取一个球的方法可以分成两类:一类是从装白球的袋子里取一个白球一类是从装白球的袋子里取一个白球有有40种取法;种取法;另一类是从装红球的袋子里取一个红球另一类是从装红球的袋子里取一个红球40个个60个个 问
4、题问题2:如图:如图,由由A村去村去B村的道路有村的道路有3条,由条,由B村去村去C村的道路有村的道路有2条。从条。从A村村经经B村去村去C村,共有多少种不同的走法村,共有多少种不同的走法?A村村B村村C村村北北南南中中北北南南 解:解:从从A村经村经 B村去村去C村有村有2步步,第一步第一步,由由A村去村去B村有村有3种方法种方法,第二步第二步,由由B村去村去C村有村有3种方法种方法,所以所以 从从A村经村经 B村去村去C村共有村共有 3 2=6 种不同的方法种不同的方法。问题问题3:用前6个大写英文字母和19个阿拉伯数字,以A1,A2,B1,B2的方式给教室的座位编号.A123456789
5、A1A2A3A4A5A6A7A8A99种B1234567899种6 9=542、分步计数原理、分步计数原理 做一件事情,完成它需要分成做一件事情,完成它需要分成n个个步骤,做第一步有步骤,做第一步有m1种不同的方法,种不同的方法,做第二步有做第二步有m2种不同的方法,种不同的方法,做第做第n步有步有mn种不同的方法,那么完种不同的方法,那么完成这件事有成这件事有N=m1m2mn种不种不同的方法同的方法。(乘法原理)(乘法原理)例例2:两个袋子里分别装有两个袋子里分别装有40个红球与个红球与60个白球,个白球,从中取一个白球和一个红球,有多少种取法?从中取一个白球和一个红球,有多少种取法?60个
6、个40个个解:取一个白球和一个红球可以分成解:取一个白球和一个红球可以分成两步来完成:两步来完成:第一步从装白球的袋子里取一个白球第一步从装白球的袋子里取一个白球,有有60种种第二步从装红球的袋子里取一个红球,第二步从装红球的袋子里取一个红球,有有40种种共共60*40=2400 一个三位密码锁一个三位密码锁,各位上数字由各位上数字由0,1,2,3,4,5,6,7,8,9十个数字组成十个数字组成,可以设置多少种三位数的可以设置多少种三位数的密码密码(各位上的数字允许重复各位上的数字允许重复)?首位数字不为首位数字不为0的的密码数是多少密码数是多少?首位数字是首位数字是0的密码数又是多少的密码数
7、又是多少?分析分析:按密码位数按密码位数,从左到右从左到右依次设置第一位、第二位、第三依次设置第一位、第二位、第三位位,需分为三步完成需分为三步完成;第一步第一步,m1=10;第二步第二步,m2=10;第三步第三步,m3=10.根据乘法原理根据乘法原理,共可以设置共可以设置 N=101010=103 种三位数的密码。种三位数的密码。练习 加法原理加法原理 乘法原理乘法原理联系联系区别一区别一完成一件事情共有完成一件事情共有n类类办法,关键词是办法,关键词是“分类分类”完成一件事情完成一件事情,共分共分n个个步骤,关键词是步骤,关键词是“分步分步”区别二区别二每类办法都能每类办法都能独立完成独立
展开阅读全文
链接地址:https://www.163wenku.com/p-3959909.html