概率论-概率论第二章复习课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《概率论-概率论第二章复习课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 第二 复习 课件
- 资源描述:
-
1、第二章复习2一、随机变量(一、随机变量(Random Variable)主要的思想:主要的思想:将样本空间数量化将样本空间数量化,即用数值表示试验的结果。即用数值表示试验的结果。1.定义:由试验结果而决定取某一数值的变量。定义:由试验结果而决定取某一数值的变量。2.分类:分类:1)一维、多维(二维)一维、多维(二维)2)离散型、非离散型(连续型和其它)离散型、非离散型(连续型和其它)3二、一维离散型随机变量的分布律二、一维离散型随机变量的分布律iipxXP ),3,2,1(iXPixxx21ippp21101 ip)12 ip)4三、一维离散型随机变量的常用分布三、一维离散型随机变量的常用分布
2、1.01分布:分布:(1次伯努利试验)次伯努利试验)2.二项分布:二项分布:(n重伯努利试验)重伯努利试验)3.几何分布:几何分布:(可列重伯努利试验)(可列重伯努利试验)),1(pBX),(pnBXknkknppCkXP )1(),1,0(nk)(pGX1)1(kppkXP),(nk1 54.泊松(泊松(Poisson)分布:)分布:5.超几何分布:超几何分布:性质:当性质:当N很大,很大,n很小时很小时)(PX ekkXPk!),1,0(nk ),(NMnHXnNmnMNmMCCCmXP mnmmnnNmnMNmMNMNMCCCC 16四、一维随机变量的分布函数四、一维随机变量的分布函数1
3、.定义:定义:2.性质:性质:)(xXPxF()P aXbF(b)-F(a);1)(0)1xFx,);()()22121xFxFxx,,0)(lim)()3xFFx;1)(lim)(xFFx7五、一维离散型随机变量的分布函数五、一维离散型随机变量的分布函数性质:处处右连续性质:处处右连续xxkxxkkkxXPxXPxXPxF)()(xF01p12xxx1xx21pp 23xxx121 nppp1nnxxx121 nppp.nxx8六、一维连续型随机变量的分布函数六、一维连续型随机变量的分布函数1.分布密度:分布密度:1)p(x)是实轴上处处有定义、非负、可积是实轴上处处有定义、非负、可积 2)
4、2.分布函数:分布函数:性质:连续的性质:连续的)()()(aFbFdxxpbXaPbadxxpxXPxFx)()()()(xFxp9注意:注意:1)p(x)不是概率,它代表不是概率,它代表X在在x附近附近 取值概率的大小。取值概率的大小。2)连续型的随机变量)连续型的随机变量XaaXP,0.bXaPbXaPbXaP 故故10七、一维连续型随机变量的重要分布七、一维连续型随机变量的重要分布1.均匀分布(均匀分布(Uniform Distribution)),(baUX),(0),(,1)(baxbaxabxpxbbxaabaxaxdxxpxFx10)()(112.指数分布(指数分布(Expon
5、ential Distribution)000)(xxexpx)(0 )(EX0001)()(xxedxxpxFxx123.标准正态分布标准正态分布(Normal Distribution)(21)(22xexpx)1,0(NXdtexxt2221)()0()(1)(xxx134.正态分布(正态分布(Normal Distribution)(钟形图像)(钟形图像)钟形图像钟形图像222)(21)(xexp),(0 为为常常数数,x),(2NX)1,0(NX)()(xxXPxXPxF14八、二项分布的正态近似八、二项分布的正态近似)1,0()1(,),(NpnpnpYnpnBY 很大时则当若)(
展开阅读全文