中考数学复习第三单元函数及其图象-二次函数的应用课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《中考数学复习第三单元函数及其图象-二次函数的应用课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 复习 第三 单元 函数 及其 图象 二次 应用 课件 下载 _中考其它_中考复习_数学_初中
- 资源描述:
-
1、第15课时二次函数的应用第三单元函数及其图象考点一建立二次函数模型解决问题常见类型关键步骤抛物线形问题建立方便求解析式的平面直角坐标系,找到图象上三点的坐标,用待定系数法求二次函数的解析式销售利润问题理清各个量之间的关系,找出等量关系求得解析式,根据要求确定函数的最值或建立方程求解图形面积问题利用几何知识用变量x表示出图形的面积y,根据要求确定函数的最值或建立方程求解【温馨提示】(1)求函数的最值时,要注意实际问题中自变量的取值限制对最值的影响.若对称轴的取值不在自变量的取值范围内,则最值在自变量取值的端点处取得.(2)建立平面直角坐标系的原则是易于求二次函数的解析式.考点二图象信息类问题1.
2、表格类:观察点的特征,验证满足条件的二次函数的解析式及其图象,利用二次函数的性质求解.2.图文类:根据图文,借助图形上的关键点,提取信息,建立二次函数模型解题.考向一利用二次函数解决营销问题例12019青岛某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图15-1所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式.(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的
3、销售量最少应为多少件?图15-1例12019青岛某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图15-1所示.(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?图15-1(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,-20,故当x55时,w随x的增大而增大,而30 x50,当x=50时,w有最大值,此时,w=1200,故销售单价定为50元时,才能使销售该商品每天的利润最大,最大利润是1200元.例12
4、019青岛某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图15-1所示.(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?图15-1(3)由题意得:(x-30)(-2x+160)800,解得:40 x70,每天的销售量y=-2x+16020,每天的销售量最少应为20件.|考向精练|2019鄂州“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降
5、1元,每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式.(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?解:(1)y=-5x+500.解析由题意可得:y=100+5(80-x),整理得y=-5x+500.2019鄂州“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月
6、可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(2)由题意,得:w=(x-40)(-5x+500)=-5x2+700 x-20000=-5(x-70)2+4500,a=-50,w有最大值,当x=70时,w最大值=4500,应降价80-70=10(元).答:当销售单价降低10元时,每月获得的利润最大,最大利润为4500元.2019鄂州“互联网+”时代,网上购物备受消费者青睐.某网店专售
展开阅读全文