书签 分享 收藏 举报 版权申诉 / 43
上传文档赚钱

类型中考数学复习-函数及其图象二次函数的图象和性质二课件.pptx

  • 上传人(卖家):晟晟文业
  • 文档编号:3930195
  • 上传时间:2022-10-26
  • 格式:PPTX
  • 页数:43
  • 大小:615.07KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《中考数学复习-函数及其图象二次函数的图象和性质二课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    中考 数学 复习 函数 及其 图象 二次 性质 课件 下载 _中考其它_中考复习_数学_初中
    资源描述:

    1、第 15 课时二次函数的图象和性质(二)第三单元函数及其图象考点一二次函数图象的平移考点聚焦抛物线y=ax2+bx+c(a0)可用配方法化成y=a(x-h)2+k(a0)的形式,任意抛物线y=a(x-h)2+k(a0)均可由抛物线y=ax2(a0)平移得到,具体平移方法如图15-1所示(假设h,k均为正数):图15-1【温馨提示】平移规则为“上加下减,左加右减”.考点二二次函数与一元二次方程、不等式的关系1.二次函数与一元二次方程的关系抛物线y=ax2+bx+c与x轴的交点个数判别式b2-4ac的正负方程ax2+bx+c=0的实数根个数2个b2-4ac0两个 的实数根1个b2-4ac=0两个的

    2、实数根没有b2-4ac0的解集函数y=ax2+bx+c的图象位于x轴上方的部分对应的点的横坐标的取值范围.(2)ax2+bx+c0的解集函数y=ax2+bx+c的图象位于 的部分对应的点的横坐标的取值范围.x轴下方题组一必会题对点演练1.九下P27练习第1(3)题改编抛物线y=x2-2x+3与x轴的交点情况是()A.有两个交点B.有一个交点C.没有交点D.交点个数不能确定C2.九下P37复习题1第3(1)题抛物线y=3x2先向左平移2个单位,得到抛物线;接着向上平移1个单位,得到抛物线.y=3(x+2)2y=3(x+2)2+13.九下P39复习题1第14题改编抛物线y=x2-4x+3与x轴交于

    3、A,B两点,抛物线的顶点为P,则PAB的面积是.答案14.九下P28A组第3题改编抛物线y=2x2-2x+5,当x=时,y=9.5.九下P28B组第4题改编当t=时,抛物线y=5x2+4tx+t2-1与x轴只有一个交点.-1或2题组二易错题【失分点】忽略了二次函数y=ax2+bx+c的隐含条件a0;求平移后的抛物线的表达式时,弄错符号;当函数类型没有明确指出时,其图象与x轴的交点要分情况讨论,因为一次函数、二次函数的图象均与x轴有交点;忽略与坐标轴的交点和与x轴的交点的区别.6.已知二次函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k4且k3B.k4且k3C.k4

    4、D.k4A7.把抛物线y=-2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得抛物线的表达式为()A.y=-2(x+1)2+2B.y=-2(x+1)2-2C.y=-2(x-1)2+2D.y=-2(x-1)2-2C8.二次函数y=x2-3x+4的图象与坐标轴的交点个数是()A.0个B.1个C.2个D.3个9.若y关于x的函数y=kx2+2x-1的图象与x轴仅有一个公共点,则实数k的值为.B0或-1考向一二次函数图象的平移例1 2019绍兴在平面直角坐标系中,抛物线y=(x+5)(x-3)经过变换后得到抛物线y=(x+3)(x-5),则这个变换可以是()A.向左平移2个单位B.向右平移2

    5、个单位C.向左平移8个单位D.向右平移8个单位答案B解析y=(x+5)(x-3)=(x+1)2-16,抛物线y=(x+5)(x-3)的顶点坐标是(-1,-16).y=(x+3)(x-5)=(x-1)2-16,抛物线y=(x+3)(x-5)的顶点坐标是(1,-16).所以将抛物线y=(x+5)(x-3)向右平移2个单位长度得到抛物线y=(x+3)(x-5),故选B.|考向精练|1.2019济宁将抛物线y=x2-6x+5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是()A.y=(x-4)2-6B.y=(x-1)2-3C.y=(x-2)2-2D.y=(x-4)2-2答案D解析y

    6、=x2-6x+5=(x-3)2-4,将其向上平移两个单位长度,再向右平移一个单位长度后,得y=(x-3-1)2-4+2,即y=(x-4)2-2.图15-2图15-2考向二二次函数与一元二次方程、不等式的关系例2(1)抛物线y=x2+2x+m-1与x轴有两个不同的交点,则m的取值范围是()A.m2C.0m2D.m0,即4-4m+40,解得mn的解集是 .x3图15-34.若函数y=x2-2x+b的图象与坐标轴有三个交点,则b的取值范围是 .答案b1且b0考向三二次函数与几何综合题例3 如图15-4,已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的

    7、对称轴.(1)求抛物线的函数解析式(用两种方法).(2)求抛物线的顶点D的坐标与对称轴.(3)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标.(4)在直线l上是否存在点M,使MAC为等腰三角形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.图15-4解:(1)方法一:抛物线y=ax2+bx+c经过A(-1,0),B(3,0)两点,设抛物线的解析式为y=a(x+1)(x-3),又抛物线过点C(0,3),3=-3a,解得a=-1,抛物线解析式为y=-(x+1)(x-3),即y=-x2+2x+3.例3 如图15-4,已知抛物线y=ax2+bx+c经过A(-1,0),B(

    8、3,0),C(0,3)三点,直线l是抛物线的对称轴.(2)求抛物线的顶点D的坐标与对称轴.图15-4解:(2)y=-x2+2x+3=-(x-1)2+4,D(1,4),对称轴为直线x=1.例3 如图15-4,已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的对称轴.(3)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标.图15-4例3 如图15-4,已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的对称轴.(4)在直线l上是否存在点M,使MAC为等腰三角形?若存在,求出所有符合条件的点M

    9、的坐标;若不存在,请说明理由.图15-4|考向精练|2019怀化如图15-5,在直角坐标系中有RtAOB,O为坐标原点,OB=1,tanABO=3,将此三角形绕原点O顺时针旋转90,得到RtCOD,二次函数y=-x2+bx+c的图象刚好经过A,B,C三点.(1)求二次函数的解析式及顶点P的坐标.图15-5(2)过定点Q的直线l:y=kx-k+3与二次函数图象相交于M,N两点.若SPMN=2,求k的值;证明:无论k为何值,PMN恒为直角三角形;当直线l绕着定点Q旋转时,PMN外接圆圆心在一条抛物线上运动,直接写出抛物线的表达式.图15-52019怀化如图15-5,在直角坐标系中有RtAOB,O为

    10、坐标原点,OB=1,tanABO=3,将此三角形绕原点O顺时针旋转90,得到RtCOD,二次函数y=-x2+bx+c的图象刚好经过A,B,C三点.(2)过定点Q的直线l:y=kx-k+3与二次函数图象相交于M,N两点.若SPMN=2,求k的值;图15-52019怀化如图15-5,在直角坐标系中有RtAOB,O为坐标原点,OB=1,tanABO=3,将此三角形绕原点O顺时针旋转90,得到RtCOD,二次函数y=-x2+bx+c的图象刚好经过A,B,C三点.(2)过定点Q的直线l:y=kx-k+3与二次函数图象相交于M,N两点.证明:无论k为何值,PMN恒为直角三角形;图15-52019怀化如图15-5,在直角坐标系中有RtAOB,O为坐标原点,OB=1,tanABO=3,将此三角形绕原点O顺时针旋转90,得到RtCOD,二次函数y=-x2+bx+c的图象刚好经过A,B,C三点.(2)过定点Q的直线l:y=kx-k+3与二次函数图象相交于M,N两点.当直线l绕着定点Q旋转时,PMN外接圆圆心在一条抛物线上运动,直接写出抛物线的表达式.图15-5

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:中考数学复习-函数及其图象二次函数的图象和性质二课件.pptx
    链接地址:https://www.163wenku.com/p-3930195.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库