书签 分享 收藏 举报 版权申诉 / 61
上传文档赚钱

类型人教版高中数学选修《第二章圆锥曲线与方程复习课》课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:3930001
  • 上传时间:2022-10-26
  • 格式:PPT
  • 页数:61
  • 大小:3.25MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《人教版高中数学选修《第二章圆锥曲线与方程复习课》课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    第二章圆锥曲线与方程复习课 人教版 高中数学 选修 第二 圆锥曲线 方程 复习 课件 下载 _其他版本_数学_高中
    资源描述:

    1、阶段复习课第 二 章【核心解读核心解读】1.1.椭圆中的特征三角形椭圆中的特征三角形a a2 2=c=c2 2+b+b2 2,ab0,a,ab0,a最大最大,其中其中a,b,ca,b,c构成构成如图的直角三角形如图的直角三角形,我们把它称作我们把它称作“特特征三角形征三角形”.2.2.椭圆的焦点三角形椭圆的焦点三角形设设P P为椭圆为椭圆 (ab0)(ab0)上任意一点上任意一点(不在不在x x轴上轴上),F F1 1,F,F2 2为焦点且为焦点且F F1 1PFPF2 2=,则,则PFPF1 1F F2 2为焦点三角形为焦点三角形.(1)(1)焦点三角形的面积焦点三角形的面积 (2)(2)焦

    2、点三角形的周长焦点三角形的周长L=2a+2c.L=2a+2c.2222xy1ab2tan Sb.23.3.双曲线渐近线的设法技巧双曲线渐近线的设法技巧(1)(1)由双曲线标准方程求其渐近线方程时,最简单实用的办法由双曲线标准方程求其渐近线方程时,最简单实用的办法是:把标准方程中的是:把标准方程中的1 1换成换成0 0,即可得到两条渐近线的方程,即可得到两条渐近线的方程.如如双曲线双曲线 (a(a0,b0,b0)0)的渐近线方程为的渐近线方程为 (a(a0,b0,b0),0),即即 双曲线双曲线 (a(a0,b0,b0)0)的渐近线方的渐近线方程为程为 (a(a0,b0,b0)0),即,即(2)

    3、(2)如果双曲线的渐近线为如果双曲线的渐近线为 时,它的双曲线方程可设时,它的双曲线方程可设为为 (0).(0).2222xy1ab2222xy0abbyx;a 2222yx1ab2222yx0abayx.b xy0ab2222xyab 4.4.共轭双曲线共轭双曲线(1)(1)双曲线与它的共轭双曲线有相同的渐近线双曲线与它的共轭双曲线有相同的渐近线.(2)(2)双曲线与它的共轭双曲线有相同的焦距双曲线与它的共轭双曲线有相同的焦距.(3)(3)与与 具有相同渐近线的双曲线系方程为具有相同渐近线的双曲线系方程为5.5.抛物线方程的设法抛物线方程的设法对顶点在原点,对称轴为坐标轴的抛物线方程,一般可

    4、设为对顶点在原点,对称轴为坐标轴的抛物线方程,一般可设为y y2 2=ax(a0)=ax(a0)或或x x2 2=ay(a0).=ay(a0).2222xy1ab2222xyabk(k0)6.6.抛物线的焦点弦问题抛物线的焦点弦问题抛物线过焦点抛物线过焦点F F的弦长的弦长|AB|AB|的一个重要结论的一个重要结论.(1)y(1)y2 2=2px(p0)=2px(p0)中中,|AB|=x,|AB|=x1 1+x+x2 2+p.+p.(2)y(2)y2 2=-2px(p0)=-2px(p0)中中,|AB|=-x,|AB|=-x1 1-x-x2 2+p.+p.(3)x(3)x2 2=2py(p0)

    5、=2py(p0)中中,|AB|=y,|AB|=y1 1+y+y2 2+p.+p.(4)x(4)x2 2=-2py(p0)=-2py(p0)中中,|AB|=-y,|AB|=-y1 1-y-y2 2+p.+p.主题一主题一 圆锥曲线的定义及应用圆锥曲线的定义及应用【典例典例1 1】(2013(2013合肥高二检测合肥高二检测)双曲线双曲线16x16x2 2-9y-9y2 2=144=144的左、右两焦点分别为的左、右两焦点分别为F F1 1,F,F2 2,点点P P在双曲线上在双曲线上,且且|PF|PF1 1|PF|PF2 2|=64,|=64,求求PFPF1 1F F2 2的面积的面积.【自主解

    6、答自主解答】双曲线方程双曲线方程16x16x2 2-9y-9y2 2=144=144化简为化简为即即a a2 2=9,b=9,b2 2=16,=16,所以所以c c2 2=25,=25,解得解得a=3,c=5,a=3,c=5,所以所以F F1 1(-5,0),F(-5,0),F2 2(5,0).(5,0).设设|PF|PF1 1|=m,|PF|=m,|PF2 2|=n,|=n,由双曲线的定义知由双曲线的定义知|m-n|=2a=6,|m-n|=2a=6,又已知又已知m mn=64,n=64,22xy1,916在在PFPF1 1F F2 2中,由余弦定理知中,由余弦定理知cosFcosF1 1PF

    7、PF2 2=所以所以F F1 1PFPF2 2=60=60,所以所以=所以所以PFPF1 1F F2 2的面积为的面积为222121212PFPFF F2|PF|PF|g22222mn2cmn2m n4c2m n2m nggg362644251.26421 2PF F12121S|PF|PF|sinFPF2Vgg1m n sin 6016 3,2 g g163.【延伸探究延伸探究】本题条件本题条件“|PF|PF1 1|PF|PF2 2|=64”|=64”改为改为PFPF1 1PFPF2 2,则,则PFPF1 1F F2 2的面积是多少?的面积是多少?【解析解析】双曲线双曲线16x16x2 2-

    8、9y-9y2 2=144,=144,化简为化简为即即a a2 2=9,b=9,b2 2=16,=16,所以所以c c2 2=25,=25,即即a=3,c=5,a=3,c=5,所以所以|F|F1 1F F2 2|=10.|=10.记记|PF|PF1 1|=m,|PF|=m,|PF2 2|=n.|=n.22xy1,916因为因为PFPF1 1PFPF2 2,所以有,所以有m m2 2+n+n2 2=(2c)=(2c)2 2=100,=100,由双曲线的定义得由双曲线的定义得|m-n|=2a=6,|m-n|=2a=6,所以所以(m-n)(m-n)2 2=36,=36,即即m m2 2+n+n2 2-

    9、2m-2mn=36,n=36,因此有因此有m mn=32,n=32,所以所以1 2PF F1211S|PF|PF|m n16.22Vgg【方法技巧方法技巧】“回归定义回归定义”解题的三点应用解题的三点应用应用一:应用一:在求轨迹方程时,若所求轨迹符合某种圆锥曲线的定义,则根据圆锥曲线在求轨迹方程时,若所求轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的定义,写出所求的轨迹方程;的定义,写出所求的轨迹方程;应用二:应用二:涉及椭圆、双曲线上的点与两个定点构成的三角形问题时,常用定义结合涉及椭圆、双曲线上的点与两个定点构成的三角形问题时,常用定义结合解三角形的知识来解决;解三角形的知识来解决;应用三:

    10、应用三:在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形,利用几何意义去解决的距离,结合几何图形,利用几何意义去解决.【补偿训练补偿训练】(2014(2014长沙高二检测长沙高二检测)过双曲线过双曲线C:C:(a(a0,b0,b0)0)的左焦点的左焦点F F1 1(-2,0)(-2,0),右焦点,右焦点F F2 2(2,0)(2,0)分别作分别作x x轴的轴的垂线,交双曲线的两渐近线于垂线,交双曲线的两渐近线于A A,B B,C C,D D四点,且四边形四点,且四边形ABCDABCD的面积为的面

    11、积为(1)(1)求双曲线求双曲线C C的标准方程的标准方程.(2)(2)设设P P是双曲线是双曲线C C上一动点,以上一动点,以P P为圆心,为圆心,PFPF2 2为半径的圆交射为半径的圆交射线线PFPF1 1于点于点M M,求点,求点M M的轨迹方程的轨迹方程.2222xy 1ab163.【解析解析】(1)(1)由由 解得解得 由双曲线及其渐近线的对由双曲线及其渐近线的对称性知四边形称性知四边形ABCDABCD为矩形,故四边形为矩形,故四边形ABCDABCD的面积为的面积为 所以所以 结合结合c=2c=2且且c c2 2=a=a2 2+b+b2 2得:得:a=1,a=1,所以双曲线所以双曲线

    12、C C的标准方程为的标准方程为(2)P(2)P是双曲线是双曲线C C上一动点,故上一动点,故|PF|PF1 1|-|PF|-|PF2 2|=2,|=2,又又M M点在射线点在射线PFPF1 1上,且上,且|PM|=|PF|PM|=|PF2 2|,故,故|F|F1 1M|=|PFM|=|PF1 1|-|PM|=|PF|-|PM|=|PF1 1|-|PF|-|PF2 2|=2,|=2,所以点所以点M M的轨迹是以的轨迹是以F F1 1为圆心,半径为为圆心,半径为2 2的圆,其轨迹方程为的圆,其轨迹方程为(x+2)(x+2)2 2+y+y2 2=4.=4.x2,byx,a2bya,4b416 3,a

    13、b3a,b3,22yx1.3主题二主题二 圆锥曲线的方程圆锥曲线的方程【典例典例2 2】求与椭圆求与椭圆 有相同的焦点,且离心率为有相同的焦点,且离心率为 的椭圆的标准方程的椭圆的标准方程.【自主解答自主解答】因为因为所以所求椭圆的焦点为所以所求椭圆的焦点为设所求椭圆的方程为设所求椭圆的方程为 (a(ab b0),0),因为因为 所以所以a=5,a=5,所以所以b b2 2=a=a2 2-c-c2 2=20,=20,所以所求椭圆的方程为所以所求椭圆的方程为22xy19455c945,5 05 0,2222xy1abc5e,c5,a522xy1.2520【方法技巧方法技巧】处理圆锥曲线问题的策略

    14、处理圆锥曲线问题的策略(1)(1)待定系数法求圆锥曲线的步骤待定系数法求圆锥曲线的步骤:定位置定位置:先确定圆锥曲线焦点的位置先确定圆锥曲线焦点的位置,从而确定方程的类型从而确定方程的类型;设方程设方程:根据方程的类型根据方程的类型,设出方程设出方程;求参数求参数:利用已知条件利用已知条件,求出求出a,ba,b或或p p的值的值;得方程得方程:代入所设方程代入所设方程,从而得出所求方程从而得出所求方程.(2)(2)焦点位置不确定的曲线方程的设法焦点位置不确定的曲线方程的设法:椭圆方程可设为椭圆方程可设为mxmx2 2+ny+ny2 2=1(m0,n0,mn);=1(m0,n0,mn);双曲线方

    15、程可设为双曲线方程可设为mxmx2 2+ny+ny2 2=1(m=1(mn0);n0:0直线与椭圆相交直线与椭圆相交;0;0直线与双曲线相交直线与双曲线相交,但直线与双曲线相交不一但直线与双曲线相交不一定有定有0,0,如当直线与双曲线的渐近线平行时如当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点直线与双曲线相交且只有一个交点,故故00是直线与双曲线相交的充分不必要条件是直线与双曲线相交的充分不必要条件;0;0直线与抛物线相交直线与抛物线相交,但直线与抛但直线与抛物线相交不一定有物线相交不一定有0,0,当直线与抛物线的对称轴平行时当直线与抛物线的对称轴平行时,直线与抛物线相交且只有

    16、直线与抛物线相交且只有一个交点一个交点,故故00也仅是直线与抛物线相交的充分条件也仅是直线与抛物线相交的充分条件,而不是必要条件而不是必要条件.相切相切:=0:=0直线与椭圆相切直线与椭圆相切;=0;=0直线与双曲线相切直线与双曲线相切;=0;=0直线与抛物线相切直线与抛物线相切.相离相离:0:0直线与椭圆相离直线与椭圆相离;0;0直线与双曲线相离直线与双曲线相离;0;b0)(ab0)右焦点的直线右焦点的直线 交交M M于于A A,B B两点,两点,P P为为ABAB的中点,且的中点,且OPOP的斜率为的斜率为(1)(1)求求M M的方程的方程.(2)C,D(2)C,D为为M M上的两点,若四

    17、边形上的两点,若四边形ACBDACBD的对角线的对角线CDABCDAB,求四边,求四边形形ACBDACBD面积的最大值面积的最大值.2222xy1abxy301.2【自主解答自主解答】(1)(1)设设A(xA(x1 1,y,y1 1),B(x),B(x2 2,y,y2 2),则则 -得得设设P(xP(x0 0,y,y0 0),因为,因为P P为为ABAB的中点,且的中点,且OPOP的斜率为的斜率为所以所以 即即又因为又因为 所以可以解得所以可以解得a a2 2=2b=2b2 2,即即a a2 2=2(a=2(a2 2-c-c2 2),即,即a a2 2=2c=2c2 2,又因为,又因为所以所以

    18、a a2 2=6=6,所以,所以M M的方程为的方程为221122xy1 ab,222222xy1 ab,1212121222xxxxyyyy0.ab12,001yx2,12121yyxx2,1212yy1xx,c3,22xy1.63(2)(2)因为因为CDAB,CDAB,直线直线ABAB的方程为的方程为 所以设直线所以设直线CDCD方方程为程为y=x+my=x+m,将,将 代入代入 得:得:解得解得x=0 x=0或或不妨令不妨令 所以可得所以可得将将y=x+my=x+m代入代入 得得3x3x2 2+4mx+2m+4mx+2m2 2-6=0-6=0,xy30,xy3022xy16323x43x

    19、0,4 3x,34 33A 0,3,B(,)33,46AB.322xy163设设C(xC(x3 3,y,y3 3),D(xD(x4 4,y,y4 4),则则|CD|=|CD|=又因为又因为=16m=16m2 2-12(2m-12(2m2 2-6)-6)0 0,即,即-3-3m m3 3,所以当,所以当m=0m=0时,时,CDCD取得最大值取得最大值4,4,所以四所以四边形边形ACBDACBD面积的最大值为面积的最大值为223434222xx4x x182m,3g18 6|AB|CD|.23g【方法技巧方法技巧】与圆锥曲线中有关的最值问题的三种解决方法与圆锥曲线中有关的最值问题的三种解决方法(1

    20、)(1)平面几何法平面几何法平面几何法求最值问题,主要是运用圆锥曲线的定义和平面几何知识求解平面几何法求最值问题,主要是运用圆锥曲线的定义和平面几何知识求解.(2)(2)目标函数法目标函数法建立目标函数解与圆锥曲线有关的最值问题,是常规方法,其关键是选取适当的变建立目标函数解与圆锥曲线有关的最值问题,是常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值量建立目标函数,然后运用求函数最值的方法确定最值.(3)(3)判别式法判别式法对二次曲线求最值,往往由条件建立二次方程用判别式来求最值对二次曲线求最值,往往由条件建立二次方程用判别式来求最值.【补偿训练补偿训练】已知已

    21、知F F1 1,F F2 2为椭圆为椭圆 的两个焦点,的两个焦点,ABAB是是过焦点过焦点F F1 1的一条动弦,求的一条动弦,求ABFABF2 2面积的最大值面积的最大值.【解析解析】由题意,由题意,F F1 1(0(0,1)1),|F|F1 1F F2 2|=2|=2,由题意知直线斜率存在由题意知直线斜率存在,设直线设直线ABAB方程为方程为y=kx+1,y=kx+1,代入椭圆方程代入椭圆方程2x2x2 2+y+y2 2=2,=2,得得(k(k2 2+2)x+2)x2 2+2kx-1=0,+2kx-1=0,则则所以所以22yx12ABAB222k1xx,xx,k2k2 g2AB28 k1x

    22、x.k2当当 即即k=0k=0时,时,有最大值为有最大值为22ABF12AB2221k1S|FF|xx|222k21122222.12k1k1Vg221k1k1,2ABFSV2.【强化训练强化训练】1.1.设抛物线的顶点在原点,准线方程为设抛物线的顶点在原点,准线方程为x=-2,x=-2,则抛物线的方程则抛物线的方程是是()()A.yA.y2 2=-8x B.y=-8x B.y2 2=8x =8x C.y C.y2 2=-4x =-4x D.y D.y2 2=4x=4x【解析解析】选选B.B.因为抛物线的准线方程为因为抛物线的准线方程为x=-2,x=-2,所以抛物线的开所以抛物线的开口向右口向

    23、右.设抛物线的标准方程为设抛物线的标准方程为y y2 2=2px(p=2px(p0)0),则其准线方程,则其准线方程为为 所以所以 解得解得p=4.p=4.所以抛物线的标准方程为所以抛物线的标准方程为y y2 2=8x.=8x.px,2 p22 ,2 2(2014(2014揭阳高二检测揭阳高二检测)以以(-6,0),(6,0)(-6,0),(6,0)为焦点,且经过点为焦点,且经过点(-5(-5,2)2)的双曲线的标的双曲线的标准方程是准方程是()()22222222xyyxA.1 B.116201620 xyyxC.1 D.120162016【解析解析】选选C.C.设双曲线的标准方程是设双曲线

    24、的标准方程是 (a(a0,b0,b0),0),因为双曲线以因为双曲线以(-6,0),(6,0)(-6,0),(6,0)为焦点,且经过点为焦点,且经过点(-5(-5,2)2),所以所以解之得解之得a a2 2=20,b=20,b2 2=16,=16,因此,该双曲线的标准方程为因此,该双曲线的标准方程为2222xy1ab222222cab6,521,ab22xy1.20163.(20143.(2014重庆高二检测重庆高二检测)若双曲线若双曲线 的离心率为的离心率为则其渐近线方程为则其渐近线方程为()()【解析解析】选选B.B.由由 得渐近线方程为得渐近线方程为2222xy1ab3,A.y2x B.

    25、y2x12C.yx D.yx22 2222xy1ab,2222bbcayx,e12.aaa【补偿训练补偿训练】已知双曲线已知双曲线 的右焦点与抛物线的右焦点与抛物线y y2 2=12x=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于的焦点重合,则该双曲线的焦点到其渐近线的距离等于()()【解析解析】选选A.A.由双曲线的右焦点与抛物线由双曲线的右焦点与抛物线y y2 2=12x=12x的焦点重合,的焦点重合,知知 于是于是 因此该双曲线的渐近因此该双曲线的渐近线方程为线方程为 即即故该双曲线的焦点到其渐近线的距离为故该双曲线的焦点到其渐近线的距离为222xy14bA.5 B.42 C.

    26、3 D.522pc3,c94b,22b5,b5.5yx2,5x2y0.3 5d5.544.(20134.(2013福建高考福建高考)椭圆椭圆:(ab0):(ab0)的左、右焦点的左、右焦点分别为分别为F F1 1,F F2 2,焦距为,焦距为2c.2c.若直线若直线 与椭圆与椭圆的一的一个交点个交点M M满足满足MFMF1 1F F2 2=2MF=2MF2 2F F1 1,则该椭圆的离心率等于则该椭圆的离心率等于_._.2222xy1aby3(xc)【解析解析】MFMF1 1F F2 2是直线的倾斜角,所以是直线的倾斜角,所以MFMF1 1F F2 2=60=60,MFMF2 2F F1 1=

    27、30=30,所以,所以MFMF2 2F F1 1是直角三角形,是直角三角形,在在RtRtMFMF2 2F F1 1中,中,|F|F2 2F F1 1|=2c|=2c,|MF|MF1 1|=c|=c,|MF|MF2 2|=|=所以所以答案:答案:3c,122c2c2e3 1.2aMFMF313 15 5在平面直角坐标系在平面直角坐标系xOyxOy中,椭圆中,椭圆C C的中心为原点,焦点的中心为原点,焦点F F1 1,F F2 2在在x x轴上,离心率为轴上,离心率为 过过F F1 1的直线的直线l交椭圆交椭圆C C于于A A,B B两点,两点,且且ABFABF2 2的周长为的周长为1616,那么

    28、椭圆,那么椭圆C C的方程为的方程为_._.【解析解析】由椭圆的第一定义可知由椭圆的第一定义可知ABFABF2 2的周长为的周长为4a=164a=16,得,得a=4,a=4,又离心率为又离心率为 即即 所以所以 故故a a2 2=16,b=16,b2 2=a=a2 2-c-c2 2=16-=16-8=88=8,则椭圆,则椭圆C C的方程为的方程为答案:答案:2.22,2c2,a2c22,22xy1.16822xy11686.(20146.(2014衡水高二检测衡水高二检测)已知已知A A,B B,C C均在椭圆均在椭圆M M:(a(a1)1)上,直线上,直线ABAB,ACAC分别过椭圆的左右焦

    29、点分别过椭圆的左右焦点F F1 1,F F2 2,当,当 时,有时,有(1)(1)求椭圆求椭圆M M的方程的方程.(2)(2)设设P P是椭圆是椭圆M M上的任一点,上的任一点,EFEF为圆为圆N N:x x2 2+(y-2)+(y-2)2 2=1=1的任一条的任一条直径,求直径,求 的最大值的最大值.222xy1a12AC FF0uuu r uuu rg21219AF AFAF.uuu r uuu ruuu rgPE PFuur uu rg【解析解析】(1)(1)因为因为 所以有所以有所以所以AFAF1 1F F2 2为直角三角形,为直角三角形,所以所以则有则有所以所以又又所以所以在在AFA

    30、F1 1F F2 2中中,有有 即即解得解得a a2 2=2,=2,所求椭圆所求椭圆M M的方程为的方程为12AC F F0uuu r uuu rg,12ACFF,uuu ruuu r1122AF cosF AFAF,uuu ruuu r2221212122119AF AF9 AF AF cosFAF9 AFAFAFuuu r uuu ruuu r uuu ruuu ruuu ruuu rg,12AF3 AFuuu ruuu r,12AFAF2a,uuu ruuu r123aaAF,AF,22uuu ruuu r2221212AFAFF F,uuu ruuu ruuu r2223aa()()4

    31、 a1,2222xy1.2(2)(2)=从而将求从而将求 的最大值转化为求的最大值转化为求 的最大值,的最大值,P P是椭圆是椭圆M M上上的任一点,设的任一点,设P(xP(x0 0,y,y0 0),则有,则有 即即x x0 02 2=2-2y=2-2y0 02 2,又又N(0,2),N(0,2),所以所以 =x=x0 02 2+(y+(y0 0-2)-2)2 2=-(y=-(y0 0+2)+2)2 2+10,+10,而而y y0 0-1,1-1,1,所以当,所以当y y0 0=-1=-1时,时,取最大值取最大值9 9,故故 的最大值为的最大值为8.8.PE PF(NENP)(NFNP)uur uu ruuu ruuruuruurgg222(NFNP)NFNPNPNFNP1 uuruuruuruuruuruuruurg,PE PFuur uu rg2NPuur2200 xy12,2NPuur2NPuurPE PFuur uu rg谢谢观看!谢谢观看!

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版高中数学选修《第二章圆锥曲线与方程复习课》课件.ppt
    链接地址:https://www.163wenku.com/p-3930001.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库