高数下册总复习知识点课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高数下册总复习知识点课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 下册 复习 知识点 课件
- 资源描述:
-
1、高数下册总复习知识点归纳高数下册总复习知识点归纳第八章 向量代数与空间解析几何总结各各章章节节知知识识点点归归纳纳第十张:重积分,三重积分第十一章:曲线积分与曲面积分第十二章:无穷级数第九章多元函数微分法第九章多元函数微分法向量的分解式:向量的分解式:(,)xyzaaaa .,轴上的投影轴上的投影分别为向量在分别为向量在其中其中zyxaaazyxkajaiaazyx 在三个坐标轴上的分向量:在三个坐标轴上的分向量:kajaiazyx,向量的坐标表示式:向量的坐标表示式:向量的坐标:向量的坐标:zyxaaa,1 1、向量的坐标表示法、向量的坐标表示法(一)向量代数(一)向量代数第八章 向量代数与
2、空间解析几何总结向量的加减法、向量与数的乘积等的坐标表达式向量的加减法、向量与数的乘积等的坐标表达式,xyzaaaa (),xyzbbbb (),xxyyzzabababab (),xxyyzzabababab (),xyzaaaa ()kbajbaibazzyyxx)()()(kbajbaibazzyyxx)()()(kajaiazyx)()()(222|zyxaaaa 向量模长的坐标表示式向量模长的坐标表示式222coszyxxaaaa 222coszyxyaaaa 222coszyxzaaaa 向量方向余弦的坐标表示式向量方向余弦的坐标表示式222coscoscos1 212212212
3、21zzyyxxMM 它们距离为它们距离为设设),(1111zyxM、),(2222zyxM为为空空间间两两点点两点间距离公式两点间距离公式:2 2、数量积、数量积 cos|baba 其其中中 为为a与与b的的夹夹角角(点积、内积点积、内积)zzyyxxbabababa 数量积的坐标表达式数量积的坐标表达式ba 00 xxyyzza ba ba ba b 222222coszyxzyxzzyyxxbbbaaabababa 两向量夹角余弦的坐标表示式两向量夹角余弦的坐标表示式3 3、向量积、向量积 sin|bac 其其中中 为为a与与b的的夹夹角角(叉积、外积叉积、外积)向量积的坐标表达式向量积
4、的坐标表达式zyxzyxbbbaaakjiba 方程特点方程特点:00),(:zyxfL设有平面曲线设有平面曲线方程为方程为轴旋转所成的旋转曲面轴旋转所成的旋转曲面绕绕曲线曲线xL)1(0),(22 zyxf方程为方程为轴旋转所成的旋转曲面轴旋转所成的旋转曲面绕绕曲线曲线yL)2(0),(22 yzxf1.旋转曲面旋转曲面(二)空间解析几何(二)空间解析几何122222 czyax122222 czayx12222 czax旋转单叶双曲面旋转单叶双曲面旋转双叶双曲面旋转双叶双曲面xyzpzyx222 旋转抛物面旋转抛物面oyzx绕绕y轴轴旋旋转转绕绕z轴轴旋旋转转122222 czxay122
5、222 czayx旋转椭球面旋转椭球面ozyx(2)圆锥面)圆锥面222zyx (1)球面)球面(3)旋转双曲面)旋转双曲面1222222 czayax1222 zyx2202020)()()(Rzzyyxx 2.柱面柱面定义:定义:平行于定直线并沿定曲线平行于定直线并沿定曲线C移动的直线移动的直线L所形成的曲面称之所形成的曲面称之.这条定曲线叫柱面这条定曲线叫柱面的的准线准线,动直线叫,动直线叫柱面的柱面的母线母线.从柱面方程从柱面方程(的特征的特征:二元方程二元方程)看柱面的看柱面的特征特征:(其他类推)(其他类推)实实 例例12222 czby椭圆柱面椭圆柱面 母线母线/轴轴x12222
6、 byax双曲柱面双曲柱面 母线母线/轴轴zpxz22 抛物柱面抛物柱面 母线母线/轴轴y抛物柱面抛物柱面xyzxyz椭圆柱面椭圆柱面pxz22 双曲柱面双曲柱面xyz12222 czby12222 byax3.二次曲面二次曲面定义定义:三元二次方程所表示的曲面称为二次曲面三元二次方程所表示的曲面称为二次曲面.(1)椭球面)椭球面1222222 czbyaxzqypx 2222(2)椭圆抛物面)椭圆抛物面)(同号同号与与qp特殊地:当特殊地:当 时,方程变为时,方程变为qp zpypx 2222旋转抛物面旋转抛物面)0(p(由(由 面上的抛物线面上的抛物线 绕它的轴绕它的轴旋转而成的)旋转而成
7、的)xozpzx22 zqypx 2222(3)马鞍面)马鞍面)(同号同号与与qp(4)单叶双曲面)单叶双曲面1222222 czbyax(5)圆锥面)圆锥面222zyx 4.4.空间曲线空间曲线 0),(0),(zyxGzyxF1 空间曲线的一般方程空间曲线的一般方程 )()()(tzztyytxx2 空间曲线的参数方程空间曲线的参数方程 CCC关于关于 的投影柱面的投影柱面 C在在 上的投影曲线上的投影曲线 Oxzy 0),(0),(:zyxGzyxFC设曲线设曲线 则则C关于关于xoy面的投影柱面的投影柱面方程应为消面方程应为消z后的方程后的方程:0),(yxH 所以所以C在在xoy面上
8、的投面上的投影曲线的方程为:影曲线的方程为:00),(zyxH3 空间曲线在坐标面上的投影空间曲线在坐标面上的投影5.5.平面平面,CBAn ),(0000zyxMxyzon0MM1 平面的点法式方程平面的点法式方程0)()()(000 zzCyyBxxA2 平面的一般方程平面的一般方程0 DCzByAx1 czbyax3 平面的截距式方程平面的截距式方程xyzoabc0:11111 DzCyBxA0:22222 DzCyBxA4 平面的夹角平面的夹角222222212121212121|cosCBACBACCBBAA 5 两平面位置特征:两平面位置特征:21)1(021212121 CCBB
9、AAnn21)2(/1 1n2 2n.21212121CCBBAAnn 重合重合1 1、偏导数概念、偏导数概念第九章多元函数微分法第九章多元函数微分法同理可定义函数同理可定义函数),(yxfz 在点在点),(00yx处对处对y的偏导数,的偏导数,为为yyxfyyxfy ),(),(lim00000 记为记为00yyxxyz ,00yyxxyf ,00yyxxyz 或或),(00yxfy.00yyxxxz ,00yyxxxf ,00yyxxxz 或或),(00yxfx.ddd.zzzxyxy2、全微分公式、全微分公式用定义证明可微与不可微的方法用定义证明可微与不可微的方法000000(,)(,)
10、()xyzfxyxfxyy 可微可微000000(,)(,)()xyzfxyxfxyy 不可微不可微多元函数连续、可导、可微的关系多元函数连续、可导、可微的关系函数可微函数可微函数连续函数连续偏导数连续偏导数连续函数可导函数可导有极限有极限3、关系、关系(),()zftt 4 4、多元复合函数求导法则、多元复合函数求导法则定理定理1 若函数若函数(),()utvt(,)zf u v 在点在点 处偏导连续处偏导连续,(,)u v在点在点 t 可导可导,ddddddzzuzvtutvt则复合函数则复合函数且有链式法则且有链式法则中间变量均为一元函数的情形中间变量均为一元函数的情形在点在点t处可导,
11、处可导,uvtz公式的记忆方法:连线相乘,分线相加公式的记忆方法:连线相乘,分线相加.5 5、全微分形式不变性、全微分形式不变性 无论无论 是自变量是自变量 的函数或中间变量的函数或中间变量 的函数,它的全微分形式是一样的的函数,它的全微分形式是一样的.zvu、vu、dddzzzuvuv定理定理1 1 设函数设函数00(,)0;F xy 单值连续函数单值连续函数 y=f(x),00(),yf x 并有连续并有连续d.dxyFyxF (隐函数求导公式隐函数求导公式)具有连续的偏导数具有连续的偏导数;的的某邻域内可唯一确定一个某邻域内可唯一确定一个的某一邻域内满足的某一邻域内满足00(,)0yFx
展开阅读全文