新人教版九年级数学上册课件《第二十一章一元二次方程》复习课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《新人教版九年级数学上册课件《第二十一章一元二次方程》复习课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二十一章一元二次方程 新人 九年级 数学 上册 课件 第二十一 一元 二次方程 复习 下载 _九年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、第二十一章 一元二次方程复习课一元二次方程一元二次方程的定义概念:整式方程;一元;一次.一般形式:ax2+bx+c=0(a0)一元二次方程的解法直接开平方法配方法公式法224(40)2bbacxbaca 因式分解法根 的 判 别 式 及根与系数的关系根的判别式:=b2-4ac根与系数的关系1212bxxacxxa一元二次方程 的 应 用传播问题平均变化率问题几何图形面积问题等知识网络知识网络几何问题专题一 一元二次方程的定义例1 若关于x的方程(m-1)x2+mx-1=0是一元二次方程,则m的取值范围是()A.m1 B.m=1 C.m1 D.m0解析 本题考查了一元二次方程的定义,即方程中必须
2、保证有二次项(二次项系数不为0),因此它的系数m-10,即m1,故选A.A配套训练 方程5x2-x-3=x2-3+x的二次项系数是 ,一次项系数是 ,常数项是 .4-20专题复习专题复习专题二 一元二次方程的根的应用解析 根据一元二次方程根的定义可知将x=0代入原方程一定会使方程左右两边相等,故只要把x=0代入就可以得到以m为未知数的方程m2-1=0,解得m=1的值.这里应填-1.这种题的解题方法我们称之为“有根必代”.例2 若关于x的一元二次方程(m-1)x2+x+m2-1=0有一个根为0,则m=.易错提示 求出m值有两个1和-1,由于原方程是一元二次方程,所以1不符合,应引起注意.-1配套
3、训练 一元二次方程x2+px-2=0的一个根为2,则p的值为 .-1【易错提示】(1)配方法的前提是二次项系数是1;(a-b)2与(a+b)2 要准确区分;(2)求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯解析(1)配方法的关键是配上一次项系数一半的平方;(2)先求出方程x213x+36=0的两根,再根据三角形的三边关系定理,得到符合题意的边,进而求得三角形周长专题三 一元二次方程的解法例3(1)用配方法解方程x2-2x-5=0时,原方程应变为()A.(x-1)2=6 B.(x+2)2=9 C.(x+1)2=6 D.(x-2)2=9(2)(易错题)三角形两
4、边长分别为3和6,第三边的长是方程x213x+36=0的根,则该三角形的周长为()A13 B 15 C18 D13或或18AA配套训练 1.菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.24A配套训练 2.用公式法和配方法分别解方程:x2-4x-1=0 (要求写出必要解题步骤).1-4-1.abc,公 式:,法241.xx移得配法项:,方22-4=-4-41-1=200.bac 2-420425.221bbacxa方 程 有 两 个 不 相 等 的 实 数 根1225,25.xx2224212.x
5、x配 方,得225x 2=5x由 此 可 得,1225,25.xx专题四 一元二次方程的根的判别式的应用例4 已知关于x的一元二次方程x2-3m=4x有两个不相等的实数根,则m的取值范围是()A.B.m2 C.m 0 D.m0 方程有两个不相等的实数根;=0 方程有两个相等的实数根;0,即42-41(-3m)=16+12m0,解得 ,故选A.43m 配套训练 1.下列所给方程中,没有实数根的是()A.x2+x=0 B.5x2-4x-1=0 C.3x2-4x+1=0 D.4x2-5x+2=02.(开放题)(开放题)若关于x的一元二次方程x2-x+m=0有两个不相等的实数根,则m的值可能是(写出一
6、个即可)D0专题五 一元二次方程的根与系数的关系例4 已知一元二次方程x24x30的两根为m,n,则m2mnn2 25解析 根据根与系数的关系可知,m+n=4,mn=-3.m2mnn2m2+n2-mn=(m+n)2-3mn=42-3(-3)=25.故填25.【重要变形】222121212()2;xxxxx x22121212()()4xxxxx x12121211xxxxxx 配套训练 已知方程2x2+4x-3=0的两根分别为x1和x2,则x12+x22的值等于()A.7 B.-2 C.D.3232A专题六 一元二次方程的应用 例6 某机械公司经销一种零件,已知这种零件的成本为每件20元,调查
展开阅读全文