中考数学一轮复习《课题17:二次函数的综合应用》课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《中考数学一轮复习《课题17:二次函数的综合应用》课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 课题17:二次函数的综合应用 中考 数学 一轮 复习 课题 17 二次 函数 综合 应用 课件 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、中考数学一轮复习课题17:二次函数的综合应用课件基础基础知识梳理知识梳理考点一 利用二次函数与一元二次方程的关系解决实际问题考点二 利用二次函数解决其他综合性问题中考题型突破中考题型突破题型一 利用二次函数与一元二次方程的关系解决实际问题题型二 考查利用二次函数解决综合性问题易错 不能根据实际问题的意义对解方程所得的根正确取舍易混易错突破易混易错突破考点年份题号分值二次函数的应用201826112017261220162612备考策略:二次函数的应用是我省中考的常考内容,主要内容包括利用待定系数法确定二次函数表达式,二次函数与一元二次方程的关系,二次函数的最大(小)值等,这些知识常隐含于实际问
2、题中,题目的难度较大.河北考情探究考点一利用二次函数与一元二次方程的关系解决实际问题考点一利用二次函数与一元二次方程的关系解决实际问题根据二次函数与一元二次方程的关系,可以解决一些实际问题,基本方法为:当已知某个函数值时,通过解一元二次方程,即可求得相应的自变量的值.基础知识梳理考点二利用二次函数解决其他综合性问题考点二利用二次函数解决其他综合性问题二次函数与平面几何、一次函数、反比例函数等知识相结合,可以解决一些综合性的实际问题,基本方法是综合运用上述知识,根据有关各量之间的关系,得到一个二次函数关系式,则问题可转化为解二次函数问题.题型一利用二次函数与一元二次方程的关系解决实际问题题型一利
3、用二次函数与一元二次方程的关系解决实际问题该题型主要考查利用二次函数与一元二次方程的关系解决实际问题,解决这类问题时,可把二次函数、函数值、自变量的值等转化为解一元二次方程问题,由此即可达到解题的目的.中考题型突破典例典例1(2017山东青岛)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=-x2+bx+c表示,且抛物线上的点C到墙面OB的水平距离为3m,到地面OA的距离为m.(1)求该抛物线的函数表达式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否
4、安全通过?(3)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?答案答案(1)根据题意,得B(0,4),C.把B(0,4),C的坐标代入y=-x2+bx+c,得解得抛物线的函数表达式为y=-x2+2x+4.y=-x2+2x+4=-(x-6)2+10,D(6,10).拱顶D到地面OA的距离为10m.173,2173,21624,17133,26cbc 2,4.bc161616(2)根据题意,货运汽车最外侧与地面OA的交点坐标为(2,0)或(10,0),当x=2或x=10时,y=-22+22+4=或y=-102+210+4=.
5、m6m这辆货车能安全通过.(3)令y=8,解方程-(x-6)2+10=8,得x1=6+2,x2=6-2,x1-x2=4.答:两排灯的水平距离最小是4m.1622316223223163333名师点拨名师点拨本题的解题技巧是转化,如在(2)中,把集装箱的宽度为4米转化为货运汽车最外侧与地面OA的交点为坐标(2,0)或(10,0),然后求抛物线上x=2时的y值,则问题进一步转化为比较此时的y值与6m(集装箱的高度)的大小,至此即可得到“能否通过”的答案.变式训练变式训练1(2018石家庄模拟)小明为了检测自己实心球的训练情况,在一次投掷的测试中,实心球经过的抛物线轨迹如图所示,其中出手点A的坐标为
6、,球在最高点B的坐标为.(1)求抛物线的函数表达式;(2)在小明练习实心球的正前方距离投掷点7米处有一个身高1.2米的小朋友在玩耍,问该小朋友是否有危险(如果实心球在小孩头顶上方飞出为安全,否则视为危险),请说明理由.160,9253,9答案答案(1)设抛物线的函数表达式为y=a(x-3)2+.点A在此抛物线上,=a(0-3)2+,解得a=-.抛物线的函数表达式为y=-(x-3)2+.(2)有危险.理由如下:将x=7代入y=-(x-3)2+,得y=-(7-3)2+=1.11.2,身高1.2米的小朋友有危险.259160,916925919192591925919259题型二考查利用二次函数解决
7、综合性问题题型二考查利用二次函数解决综合性问题该题型主要考查利用二次函数解决综合性问题,在这类问题中,二次函数常与方程、不等式、图形的全等、相似等知识相结合,难度较大.典例典例2 (2016沧州模拟)如图,抛物线y=-x2+bx+c与直线AB相交于A(-1,0),B(2,3)两点,与y轴交于点C,其顶点为D.(1)求抛物线的函数表达式;(2)作直线x=3,在直线上取一点M(3,m),求使MC+MD的值最小时m的值;(3)若P是该抛物线上位于直线AB上方的一动点,求APB面积的最大值.答案答案(1)将A,B点的坐标代入y=-x2+bx+c,得解得抛物线的函数表达式为y=-x2+2x+3.(2)y
展开阅读全文