中考数学常考易错点:3-3-2《二次函数》.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《中考数学常考易错点:3-3-2《二次函数》.doc》由用户(田田田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次函数 中考 数学 常考易错点 二次 函数 下载 _二轮专题_中考复习_数学_初中
- 资源描述:
-
1、二次函数易错清单1. 二次函数与方程、不等式的联系.【例1】(2014湖北孝感)抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:b2-4ac0;a+b+c0;由抛物线顶点坐标得到抛物线的对称轴为直线-1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y0,则a+b+c0,所以错误.顶点为D(-1,2),抛物线的对称轴为直线x=-1.抛物线与x轴的一个交点A在点(-3,0)和(-2,0)之间,抛物线与x轴的另一个交点在点(0,0)和(1,0)之间.当x=1时,y0.
2、a+b+c0,抛物线开口向上;对称轴为直线-;抛物线与y轴的交点坐标为(0,c);当b2-4ac0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac0,抛物线与x轴没有交点.2. 用二次函数解决实际问题.【例2】(2014江苏泰州)某研究所将某种材料加热到1000时停止加热,并立即将材料分为A,B两组,采用不同工艺做降温对比实验,设降温开始后经过xmin时,A,B两组材料的温度分别为yA,yB,yA,yB与x的函数关系式分别为yA=kx+b, (部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求yA,yB关于x的函数关系式;(2)当A组材料的温
3、度降至120时,B组材料的温度是多少?(3)在0x40的什么时刻,两组材料温差最大?【解析】(1)首先求出yB函数关系式,进而得出交点坐标,即可得出yA函数关系式;(2)首先将y=120代入求出x的值,进而代入yB求出答案;(3)得出yA-yB的函数关系式,进而求出最值即可.解得m=100.yB=(x-60)2+100.解得yB=200.yA=-20x+1000.(2)当A组材料的温度降至120时,120=-20x+1000,解得x=44.B组材料的温度是164.当x=20时,两组材料温差最大为100.【误区纠错】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及二次函数最值求法等
4、知识,得出两种材料的函数关系式是解题关键.3. 二次函数存在性问题的讨论. (1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A的坐标,判定点A是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【解析】(1)利用待定系数法求出抛物线的解析式;(2)首先求出对称点A的坐标,然后代入抛物线解析式,即可判定点A是否在抛物线上.本问关键在于求出A的坐标.如答图所示,作辅助线,构造一对相似三角形RtAEARtOAC,利用相似关系、对称性质、勾股定理,求
5、出对称点A的坐标;(3)本问为存在型问题.解题要点是利用平行四边形的定义,列出代数关系式求解.如答图所示,平行四边形的对边平行且相等,因此PM=AC=10;利用含未知数的代数式表示出PM的长度,然后列方程求解. 【误区纠错】本题是二次函数的综合题型,考查了二次函数的图象及性质、待定系数法、相似、平行四边形、勾股定理、对称等知识点,涉及考点较多,有一定的难度.第(2)问的要点是求对称点A的坐标,第(3)问的要点是利用平行四边形的定义列方程求解.名师点拨1. 能通过画二次函数图象求一元二次方程的近似解,能说明二次函数与一元二次方程的联系与区别.2. 会借助函数思想及图象求不等式的解集.3. 借助二
6、次函数思想解决实际问题.提分策略1. 抛物线对称性的应用.(1)二次函数的图象是抛物线,是轴对称图形,充分利用抛物线的轴对称性,是研究利用二次函数的性质解决问题的关键.(2)已知二次函数图象上几个点的坐标,一般用待定系数法直接列方程(组)求二次函数的解析式.(3)已知二次函数图象上的点(除顶点外)和对称轴,便能确定与此点关于对称轴对称的另一点的坐标.【例1】如图,抛物线y=-x2+bx+c与x轴交于A,B两点,与y轴交于点C,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.(1)求该抛物线所对应的函数关系式;(2)求ABD的面积;(3)将三角形AO
7、C绕点C逆时针旋转90,点A对应点为点G,问点G是否在该抛物线上?请说明理由.【解析】(1)在矩形OCEF中,已知OF,EF的长,先表示出C,E的坐标,然后利用待定系数法确定该函数的关系式.(2)根据(1)的函数关系式求出A,B,D三点的坐标,以AB为底、点D纵坐标的绝对值为高,可求出ABD的面积.(3)首先根据旋转条件求出点G的坐标,然后将点G的坐标代入抛物线对应的函数关系式中直接进行判断即可.抛物线所对应的函数解析式为y=-x2+2x+3.(2)y=-x2+2x+3=-(x-1)2+4,抛物线的顶点坐标为D(1,4).ABD中边AB的高为4.令y=0,得-x2+2x+3=0,解得x1=-1
8、,x2=3.所以AB=3-(-1)=4. (3)AOC绕点C逆时针旋转90,CO落在CE所在的直线上,由(2)可知OA=1,点A对应点G的坐标为(3,2).当x=3时,y=-32+23+3=02,点G不在该抛物线上.2. 利用二次函数解决抛物线形问题.利用二次函数解决抛物线形问题,一般是先根据实际问题的特点建立直角坐标系,设出合适的二次函数的解析式,把实际问题中已知条件转化为点的坐标,代入解析式求解,最后要把求出的结果转化为实际问题的答案.【例2】如图,排球运动员站在点O处练习发球,将球从点O正上方2 m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-
展开阅读全文