书签 分享 收藏 举报 版权申诉 / 63
上传文档赚钱

类型第五章微分方程模型-数学模型电子教案-课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:3905578
  • 上传时间:2022-10-24
  • 格式:PPT
  • 页数:63
  • 大小:460.98KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《第五章微分方程模型-数学模型电子教案-课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    第五 微分方程 模型 数学模型 电子 教案 课件
    资源描述:

    1、第五章第五章 微分方程模型微分方程模型5.1 传染病模型传染病模型5.2 经济增长模型经济增长模型5.3 正规战与游击战正规战与游击战5.4 药物在体内的分布与排除药物在体内的分布与排除5.5 香烟过滤嘴的作用香烟过滤嘴的作用5.6 人口预测和控制人口预测和控制5.7 烟雾的扩散与消失烟雾的扩散与消失5.8 万有引力定律的发现万有引力定律的发现动态动态模型模型 描述对象特征随时间描述对象特征随时间(空间空间)的演变过程的演变过程 分析对象特征的变化规律分析对象特征的变化规律 预报对象特征的未来性态预报对象特征的未来性态 研究控制对象特征的手段研究控制对象特征的手段 根据函数及其变化率之间的关系

    2、确定函数根据函数及其变化率之间的关系确定函数微分微分方程方程建模建模 根据建模目的和问题分析作出简化假设根据建模目的和问题分析作出简化假设 按照内在规律或用类比法建立微分方程按照内在规律或用类比法建立微分方程5.1 传染病模型传染病模型问题问题 描述传染病的传播过程描述传染病的传播过程 分析受感染人数的变化规律分析受感染人数的变化规律 预报传染病高潮到来的时刻预报传染病高潮到来的时刻 预防传染病蔓延的手段预防传染病蔓延的手段 按照传播过程的一般规律,按照传播过程的一般规律,用机理分析方法建立模型用机理分析方法建立模型 已感染人数已感染人数(病人病人)i(t)每个病人每天有效接触每个病人每天有效

    3、接触(足以使人致病足以使人致病)人数为人数为 模型模型1 1假设假设ttititti)()()(若有效接触的是病人,若有效接触的是病人,则不能使病人数增加则不能使病人数增加必须区分已感染者必须区分已感染者(病病人人)和未感染者和未感染者(健康人健康人)建模建模0)0(iiidtdiitteiti0)(?sidtdi1)()(tits模型模型2 2区分已感染者区分已感染者(病人病人)和未感染者和未感染者(健康人健康人)假设假设1)总人数)总人数N不变,病人和健康不变,病人和健康 人的人的 比例分别为比例分别为)(),(tsti 2)每个病人每天有效接触人数)每个病人每天有效接触人数为为,且且使接

    4、触的健康人致病使接触的健康人致病建模建模ttNitstittiN)()()()(0)0()1(iiiidtdi 日日接触率接触率SI 模型模型teiti1111)(00)0()1(iiiidtdi模型模型21/2tmii010t11ln01itmtm传染病高潮到来时刻传染病高潮到来时刻 (日接触率日接触率)tm 1itLogistic 模型病人可以治愈!病人可以治愈!?t=tm,di/dt 最大最大模型模型3传染病无免疫性传染病无免疫性病人治愈成病人治愈成为健康人,健康人可再次被感染为健康人,健康人可再次被感染增加假设增加假设SIS 模型模型3)病人每天治愈的比例为)病人每天治愈的比例为 日日

    5、治愈率治愈率ttNittitNstittiN)()()()()(建模建模/日接触率日接触率1/感染期感染期 一个感染期内一个感染期内每个病人的每个病人的有效接触人数,称为有效接触人数,称为接触数接触数。0)0()1(iiiiidtdi1,01,11)(i)11(iidtdi模型模型3i0i0接触数接触数 =1 阈值阈值/1)(ti形曲线增长按Sti)(感染期内感染期内有效接触感染的有效接触感染的健康者人数不超过病人数健康者人数不超过病人数小01i1-1/i0iiidtdi)1(模型模型2(SI模型模型)如何看作模型如何看作模型3(SIS模型模型)的特例的特例idi/dt01 10ti 11-1

    6、/i0t 1di/dt 1/i(t)先升后降至先升后降至0P2:s01/i(t)单调降至单调降至01/阈阈值值P3P4P2S0ssss00lnln模型模型4SIR模型模型预防传染病蔓延的手段预防传染病蔓延的手段 (日接触率日接触率)卫生水平卫生水平 (日日治愈率治愈率)医疗水平医疗水平 传染病不蔓延的条件传染病不蔓延的条件s01/的估计的估计0ln1000sssis0i忽略 降低降低 s0提高提高 r0 1000ris 提高阈值提高阈值 1/降低降低 (=/),群体免疫群体免疫模型模型4SIR模型模型被传染人数的估计被传染人数的估计0ln1000sssis记被传染人数比例记被传染人数比例ssx

    7、00)211(200sxsx0)1ln(10sxx)1(200ssx2xx 03)经济增长的条件经济增长的条件)1(10120yfLyf)()(000LKfyfLLyftZ)(0/100)1(00BeKKdtdydtdZt成立B 0成立时当BKK,1/000劳动力增长率小于初始投资增长率劳动力增长率小于初始投资增长率每个劳动力的产值每个劳动力的产值 Z(t)=Q(t)/L(t)增长增长dZ/dt03)经济增长的条件经济增长的条件dtdyyfdtdZ105.3 正规战与游击战正规战与游击战战争分类:正规战争,游击战争,混合战争战争分类:正规战争,游击战争,混合战争只考虑双方兵力多少和战斗力强弱只

    8、考虑双方兵力多少和战斗力强弱兵力因战斗及非战斗减员而减少,因增援而增加兵力因战斗及非战斗减员而减少,因增援而增加战斗力与射击次数及命中率有关战斗力与射击次数及命中率有关建模思路和方法为用数学模型讨论社会建模思路和方法为用数学模型讨论社会领域的实际问题提供了可借鉴的示例领域的实际问题提供了可借鉴的示例第一次世界大战第一次世界大战Lanchester提出提出预测战役结局的模型预测战役结局的模型0),(),()(0),(),()(tvyyxgtytuxyxftx一般模型一般模型 每方战斗减员率取决于双方的兵力和战斗力每方战斗减员率取决于双方的兵力和战斗力 每方非战斗减员率与本方兵力成正比每方非战斗减

    9、员率与本方兵力成正比 甲乙双方的增援率为甲乙双方的增援率为u(t),v(t)f,g 取决于战争类型取决于战争类型x(t)甲方兵力,甲方兵力,y(t)乙方兵力乙方兵力模型模型假设假设模型模型)()(tvybxytuxayx正规战争模型正规战争模型 甲方战斗减员率只取决于乙方的兵力和战斗力甲方战斗减员率只取决于乙方的兵力和战斗力双方均以正规部队作战双方均以正规部队作战xxprbbxg,忽略非战斗减员忽略非战斗减员 假设没有增援假设没有增援00)0(,)0(yyxxbxyayxf(x,y)=ay,a 乙方每个士兵的杀伤率乙方每个士兵的杀伤率a=ry py,ry 射击率,射击率,py 命中率命中率)(

    10、ty)(tx0ak0k0kbk0k正规战争模型正规战争模型为判断战争的结局,不求为判断战争的结局,不求x(t),y(t)而在相平面上讨论而在相平面上讨论 x 与与 y 的关系的关系00)0(,)0(yyxxbxyayxaybxdxdy2020bxaykkbxay22000yxk时平方律平方律 模型模型甲方胜 0k平局0kyyxxprprabxy200乙方胜乙方胜游击战争模型游击战争模型双方都用游击部队作战双方都用游击部队作战 甲方战斗减员率还随着甲方兵力的增加而增加甲方战斗减员率还随着甲方兵力的增加而增加 忽略非战斗减员忽略非战斗减员 假设没有增援假设没有增援yrxxxxssrprddxyyx

    11、g/,),(00)0(,)0(yyxxdxyycxyxf(x,y)=cxy,c 乙方每个士兵的杀伤率乙方每个士兵的杀伤率c=ry pyry射击率射击率py 命中率命中率py=sry/sxsx 甲方活动面积甲方活动面积sry 乙方射击有效面积乙方射击有效面积)(tycm0dm)(tx0m0m0m游击战争模型游击战争模型00)0(,)0(yyxxdxyycxyx00dxcymmdxcy乙方胜时000yxmyryyxrxxssrssrcdxy00线性律线性律 模型模型甲方胜 0m平局 0mcddxdy)(ty)(tx0乙方胜,0n平局,0n甲方胜,0n00)0(,)0(yyxxbxycxyx混合战争

    12、模型混合战争模型甲方为游击部队,乙方为正规部队甲方为游击部队,乙方为正规部队020222bxcynnbxcy02002cxbxy乙方胜0n100)/(200 xy02002xsrsprxyryyxxx乙方必须乙方必须10倍于甲方的兵力倍于甲方的兵力设设 x0=100,rx/ry=1/2,px=0.1,sx=1(km2),sry=1(m2)5.4 药物在体内的分布与排除药物在体内的分布与排除 药物进入机体形成药物进入机体形成血药浓度血药浓度(单位体积血液的药物量单位体积血液的药物量)血药浓度需保持在一定范围内血药浓度需保持在一定范围内给药方案设计给药方案设计 药物在体内吸收、分布和排除过程药物在

    13、体内吸收、分布和排除过程 药物动力学药物动力学 建立建立房室模型房室模型药物动力学的基本步骤药物动力学的基本步骤 房室房室机体的一部分,药物在一个房室内均匀机体的一部分,药物在一个房室内均匀分布分布(血药浓度为常数血药浓度为常数),在房室间按一定规律转移,在房室间按一定规律转移 本节讨论本节讨论二室模型二室模型中心室中心室(心、肺、肾等心、肺、肾等)和和周边室周边室(四肢、肌肉等四肢、肌肉等)中心室中心室周边室周边室给药给药排除排除)(0tf111)(),(Vtxtc222)(),(Vtxtc12k21k13k)()(02211131121tfxkxkxktx模型假设模型假设 中心室中心室(1

    14、)和周边室和周边室(2),容积不变容积不变 药物在房室间转移速率及向体外排除速率,药物在房室间转移速率及向体外排除速率,与该室血药浓度成正比与该室血药浓度成正比 药物从体外进入中心室,在二室间药物从体外进入中心室,在二室间相互转移相互转移,从中心室排出体外从中心室排出体外模型建立模型建立2,1)()(iVtctxiii容积浓度药量给药速率0f2211122)(xkxktxtttteBeAtceBeAtc222111)()(1321132112kkkkk2211122121022112113121)()()()(ckckVVtcVtfckVVckktc2,1),()(itcVtxiii线性常系数

    15、线性常系数非齐次方程非齐次方程对应齐次对应齐次方程通解方程通解模型建立模型建立)()()()()()()(212022121101tttteeVkDtcekekVDtc0)0(,)0(,0)(21010cVDctf几种常见的给药方式几种常见的给药方式1.快速静脉注射快速静脉注射t=0 瞬时瞬时注射剂量注射剂量D0的药物进入中心室的药物进入中心室,血血药浓度立即为药浓度立即为D0/V12211122121022112113121)()()()(ckckVVtcVtfckVVckktc1321132112kkkkk给药速率给药速率 f0(t)和初始条件和初始条件122113121212211312

    16、12213210122221130111)(,)(0,)(0,)(BVkkkVBAVkkkVATtVkkkkeBeAtcTtVkkeBeAtctttt0)0(,0)0(,)(2100ccktf2.恒速静脉滴注恒速静脉滴注2211122121022112113121)()()()(ckckVVtcVtfckVVckktct T,c1(t)和和 c2(t)按按指数规律趋于零指数规律趋于零药物以速率k0进入中心室0Tt 0010 xkf)(0tx吸收室中心室000010)0()(Dxxktx tkttEeBeAetc01)(1tkeDtx0100)(tkekDtxktf010100010)()(3.

    17、口服或肌肉注射口服或肌肉注射相当于药物相当于药物(剂量剂量D0)先进入吸收室,吸收后进入中心室先进入吸收室,吸收后进入中心室吸收室药量吸收室药量x0(t)2211122121022112113121)()()()(ckckVVtcVtfckVVckktcEBAcc,0)0(,0)0(21ttBeAetctc)()(11参数估计参数估计各种给药方式下的各种给药方式下的 c1(t),c2(t)取决于参数取决于参数k12,k21,k13,V1,V2t=0快速静脉注射快速静脉注射D0,在在ti(i=1,2,n)测得测得c1(ti)()()()(2121101ttekekVDtc充分大设t,由较大的由较

    18、大的 用最小二乘法定用最小二乘法定A A,)(,1iitct由较小的由较小的 用最小二乘法定用最小二乘法定B,)(,1iitctttAeeVkDtc)()()(12101211312kkkBAVDc101)0(011130)(dttcVkD0,21cct1321132112kkkkkBAVkD1130ABBAk)(131321kk参数估计参数估计进入中心室的药物全部排除进入中心室的药物全部排除 过滤嘴的作用与它的材料和长度有什么关系过滤嘴的作用与它的材料和长度有什么关系 人体吸入的毒物量与哪些因素有关,其中人体吸入的毒物量与哪些因素有关,其中哪些因素影响大,哪些因素影响小。哪些因素影响大,哪些

    19、因素影响小。模型模型分析分析 分析吸烟时毒物进入人体的过程,建立分析吸烟时毒物进入人体的过程,建立吸烟过程的数学模型。吸烟过程的数学模型。设想一个设想一个“机器人机器人”在典型环境下吸烟,在典型环境下吸烟,吸烟方式和外部环境认为是不变的。吸烟方式和外部环境认为是不变的。问题问题5.5 香烟过滤嘴的作用香烟过滤嘴的作用模型模型假设假设定性分析定性分析QvaMl,2?,1Qlb?Qu1)l1烟草长,烟草长,l2过滤嘴长,过滤嘴长,l=l1+l2,毒物量毒物量M均匀分布,密度均匀分布,密度w0=M/l12)点燃处毒物随烟雾进入空气和沿香烟)点燃处毒物随烟雾进入空气和沿香烟穿行的数量比是穿行的数量比是

    20、a:a,a+a=13)未点燃的烟草和过滤嘴对随烟雾穿行的)未点燃的烟草和过滤嘴对随烟雾穿行的毒物的毒物的(单位时间单位时间)吸收率分别是吸收率分别是b和和 4)烟雾沿香烟穿行速度是常数)烟雾沿香烟穿行速度是常数v,香烟燃香烟燃烧速度是常数烧速度是常数u,v uQ 吸一支烟毒物进入人体总量吸一支烟毒物进入人体总量vxlxlxqlxxbqxxqxq,)(,0,)()()(11lxlxqvlxxqvbdxdq11),(0),(ulTdttlqQT/,),(01模模型型建建立立xx)(xq)(xxqxv0 x1llt=0,x=0,点燃香烟点燃香烟0)0,(wxw000)0(uwHaHqq(x,t)毒物

    21、流量毒物流量w(x,t)毒物密度毒物密度1)求求q(x,0)=q(x)lxleeaHlxeaHxqvlxvblvbx1)(010,0,)(11),()(tutuwtHlxleetaHlxutetaHtxqvlxvutlbvutxb1)()(1)(,)(,)(),(11vlvutlbeetutauwtlq21)(),(),(t时刻,香烟燃至时刻,香烟燃至 x=ut1)求求q(x,0)=q(x)2)求求q(l,t)tvtxqbtxwttxw),(),(),(0)()0,(),(wxwetutauwvbtwvutxbaaaeawtutwvbuta1,1),(03)求求w(ut,t)vabutvbut

    22、vlvblaeeeeaauwtlq210),(vblavluleebavawdttlqQ121/001),(vlvutlbeetutauwtlq21)(),(),(vbutaaeawtutw01),(rervblarr1)(,1),(2raMeQvl4)计算计算 Q11vblar结果结果分析分析),(2raMeQvlrervblarr1)(,12/1)(rr vblaaMeQvl2112烟草烟草为什么有作用为什么有作用?1)Q与与a,M成正比,成正比,aM是毒物集中在是毒物集中在x=l 处的吸入量处的吸入量2)过滤嘴因素,过滤嘴因素,,l2 负指数负指数作用作用vle2vlaMe2是毒物集中在

    23、是毒物集中在x=l1 处的吸入量处的吸入量3)(r)烟草的吸收作用烟草的吸收作用b,l1 线性线性作用作用vblavbleebavawQ12021vlbeQQ2)(21vblavleebavawQ12011带过滤嘴带过滤嘴不带过滤嘴不带过滤嘴21QQb结果结果分析分析4)与另一支不带过滤嘴的香烟比较,与另一支不带过滤嘴的香烟比较,w0,b,a,v,l 均相同,吸至均相同,吸至 x=l1扔掉扔掉提高提高 -b 与加长与加长l2,效果相同效果相同5.6 人口预测和控制人口预测和控制)(),(,0),0(tNtrFtFmrFtrp),(年龄分布对于人口预测的重要性年龄分布对于人口预测的重要性 只考虑

    24、自然出生与死亡,不计迁移只考虑自然出生与死亡,不计迁移人口人口发展发展方程方程的人口)年龄人口分布函数rtrF(),(人口密度函数),(trp人口总数)(tN最高年龄)(mr),(),(trptrtprp11,),(),(),(),(),(),(drdtdttrptrtrpdttrpdttrpdttdrrp人口发展方程人口发展方程死亡率),(trdrtrp),(人数年龄,drrrt死亡人数内),(dttt人数年龄,11drdrrdrrdtt1drdt 一阶偏微分方程一阶偏微分方程drdttrptr),(),(drdttdrrp),(10),(),0(0),()0,(),(),(0ttftprr

    25、prptrptrtprp人口发展方程人口发展方程已知函数(人口调查)已知函数(人口调查)生育率(控制人口手段)生育率(控制人口手段)0tr)(0rprt)(tfrt rt)(),(rtrrtertfrtetrptrprrtrdssdss,)(0,)(),(0)()(0rdstsptrF0),(),(mrdstsptN0),()(21),(),(),()(rrdrtrptrktrbtf),()(),(trhttrb211),(rrdrtrh21),()(rrdrtrbt生育率的分解生育率的分解性别比函数女性)(),(trk生育数女性)(),(trb育龄区间,21rr21),(),(),()()(

    26、rrdrtrptrktrhttf 总和生育率总和生育率h生育模式生育模式)(),(rhtrh01r2rrrtertfrtetrptrprrtrdssdss,)(0,)(),(0)()(021),(),(),()()(rrdrtrptrktrhttf人口发展方程和生育率人口发展方程和生育率)(t总和生育率总和生育率控制生育的多少控制生育的多少),(trh生育模式生育模式控制生育的早晚和疏密控制生育的早晚和疏密),(),(trptrtprp)(tf)(0rp),(trp)(t 正反馈系统正反馈系统 滞后作用很大滞后作用很大mrdrtrrptNtR0),()(1)(tdrtrdetSt0),()()

    27、(/)()(tStRt mrdrtrptN0),()(人口指数人口指数1)人口总数)人口总数2)平均年龄)平均年龄3)平均寿命)平均寿命t时刻出生的人,死亡率按时刻出生的人,死亡率按 (r,t)计算的平均存活时间计算的平均存活时间4)老龄化指数)老龄化指数控制生育率控制生育率控制控制 N(t)不过大不过大控制控制 (t)不过高不过高5.7 烟雾的扩散与消失烟雾的扩散与消失现象现象和和问题问题炮弹在空中爆炸,烟雾向四周扩散,形成圆形炮弹在空中爆炸,烟雾向四周扩散,形成圆形不透光区域。不透光区域。不透光区域不断扩大,然后区域边界逐渐明亮,不透光区域不断扩大,然后区域边界逐渐明亮,区域缩小,最后烟雾

    28、消失。区域缩小,最后烟雾消失。建立模型描述烟雾扩散和消失过程,分析消失建立模型描述烟雾扩散和消失过程,分析消失时间与各因素的关系。时间与各因素的关系。问题问题分析分析无穷空间由瞬时点源导致的扩散过程,用二阶偏无穷空间由瞬时点源导致的扩散过程,用二阶偏微分方程描述烟雾浓度的变化。微分方程描述烟雾浓度的变化。观察的烟雾消失与烟雾对光线的吸收,以及仪观察的烟雾消失与烟雾对光线的吸收,以及仪器对明暗的灵敏程度有关。器对明暗的灵敏程度有关。gradCkq模型模型假设假设1)烟雾在无穷空间扩散,不受大地和风)烟雾在无穷空间扩散,不受大地和风的影响;扩散服从热传导定律。的影响;扩散服从热传导定律。2)光线穿

    29、过烟雾时光强的减少与烟雾浓)光线穿过烟雾时光强的减少与烟雾浓度成正比;无烟雾的大气不影响光强。度成正比;无烟雾的大气不影响光强。3)穿过烟雾进入仪器的光线只有明暗之)穿过烟雾进入仪器的光线只有明暗之分,明暗界限由仪器灵敏度决定。分,明暗界限由仪器灵敏度决定。模型模型建立建立1)烟雾浓度)烟雾浓度 的变化规律的变化规律),(tzyxC热传导定律:单位时间通过单位法热传导定律:单位时间通过单位法向面积的流量与浓度梯度成正比向面积的流量与浓度梯度成正比 21QQ 222222)(zCyCxCkgradCdivktCVdVttzyxCtzyxCQ),(),(2tttsdtdnqQ1VSn1Qq流量通过

    30、,ttt内烟雾改变量sVdVqdivdnq曲面积分的奥氏公式曲面积分的奥氏公式gradCkq1)烟雾浓度)烟雾浓度 的变化规律的变化规律),(tzyxCktzyxektQtzyxC423222)4(),(),()0,(zyxQzyxC0,222222tzyxzCyCxCktC 初始条件初始条件Q炮弹释放的烟雾总量炮弹释放的烟雾总量 单位强度的点源函数单位强度的点源函数 对任意对任意t,C的等值面是球面的等值面是球面 x2+y2+z2=R2;RC 仅当仅当 t,对任意点对任意点(x,y,z),C01)烟雾浓度)烟雾浓度 的变化规律的变化规律),(tzyxC00)(IlI)()(lIlCdldI2

    31、)穿过烟雾光强的变化规律)穿过烟雾光强的变化规律光强的减少与烟光强的减少与烟雾浓度成正比雾浓度成正比方向的烟雾浓度沿方向的光强沿llCllI)()(00)(Ill的光强为未进入烟雾lldssCeIlI0)(0)(1),(dztzyxCe观测结果为暗仪器灵敏度,当,1/0II3)仪器灵敏度与烟雾明暗界限)仪器灵敏度与烟雾明暗界限烟雾浓度连续变化烟雾浓度连续变化烟雾中光强连续变化烟雾中光强连续变化lldssCeIlI0)(0)(仪器仪器z-设光源在设光源在z=-,仪器在仪器在z=,则观测到的则观测到的明暗界限为明暗界限为不透光区域有扩大、不透光区域有扩大、缩小、消失的过程缩小、消失的过程穿过烟雾进

    32、入仪器的光线只有明暗之穿过烟雾进入仪器的光线只有明暗之分,明暗界限由仪器灵敏度决定。分,明暗界限由仪器灵敏度决定。不透光区域边界不透光区域边界tkQkttr4ln4)(ktyxektQ4224adxeax24)不透光区域边界的变化规律)不透光区域边界的变化规律1),(dztzyxCektzyxektQtzyxC423222)4(),(很小)(11ln1),(dztzyxCktyxektQdztzyxC4224),(222ryx对任意对任意t,不透光区域边界是圆周不透光区域边界是圆周不透光区域不透光区域边界半径边界半径)(41最大值,eQrrekQttm0,42rkQttr(t)rm0t1t2t

    33、tkQkttr4ln4)(结果分析结果分析1127.2tett观测到不透光区域边界达到最大的观测到不透光区域边界达到最大的时刻时刻t1,可以预报烟雾消失的时刻可以预报烟雾消失的时刻t2。mrtQ,11tk5.8 万有引力定律的发现万有引力定律的发现背景背景航海业发展航海业发展天文观测精确天文观测精确“地心说地心说”动动摇摇哥白尼:哥白尼:“日心说日心说”伽里伽里略:落体运动略:落体运动开普开普勒:行星运动三定律勒:行星运动三定律变速运动的计算方法变速运动的计算方法牛顿:一切运动有力学原因牛顿:一切运动有力学原因牛顿运动三定律牛顿运动三定律牛顿:研究变速运动,发明微积分(流数法)牛顿:研究变速运

    34、动,发明微积分(流数法)开普开普勒三定律勒三定律牛顿运动第二定律牛顿运动第二定律万有引力定律万有引力定律自然科学之数学原理自然科学之数学原理(1687)模型假设模型假设极极坐标系坐标系(r,)太阳太阳(0,0)1.行星轨道行星轨道)1(,cos12222eababpepra长半轴长半轴,b短短半轴半轴,e离心率离心率Ar2/23.行星运行周期行星运行周期 T32aTrmf 行星位置:向径行星位置:向径)(),()(ttrtrO(太阳太阳)P(行星行星)rr2.单位时间单位时间 扫扫过过面积为常数面积为常数 Arm 行星质量行星质量 绝对常数绝对常数4.行星运行受力行星运行受力 f模型建立模型建

    35、立O(太阳太阳)P(行星行星)rr向径向径 的基向量的基向量rjiujiurcossinsincosruururrrruuuuurrurrrururrrr )2()(2Ar2/2324,2rrArA 02 rrrurrr )(2cos1 epr32)(4,sin2prrpArpAer ruprAr 224rmf rrrrprmAf0022,4rurr模型建立模型建立rrrrprmAf0022,4万有引力定律万有引力定律02rrkMmf需需证明证明 4A2/p=kM(与(与哪一颗行星无关)哪一颗行星无关)A单位时间单位时间 扫扫过过面积面积r32aTabTAO(太阳太阳)P(行星行星)rrkM/42(习题习题)/22pA)1(,cos12222eababpepr

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:第五章微分方程模型-数学模型电子教案-课件.ppt
    链接地址:https://www.163wenku.com/p-3905578.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库