书签 分享 收藏 举报 版权申诉 / 25
上传文档赚钱

类型沪教版(上海)八年级下册数学预习复习必会知识点提纲(实用!).docx

  • 上传人(卖家):wenku818
  • 文档编号:3899002
  • 上传时间:2022-10-23
  • 格式:DOCX
  • 页数:25
  • 大小:302.57KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《沪教版(上海)八年级下册数学预习复习必会知识点提纲(实用!).docx》由用户(wenku818)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    沪教版 上海 年级 下册 数学 预习 复习 温习 知识点 提纲 实用 下载 _八年级下册_沪教版(五四制)_数学_初中
    资源描述:

    1、沪教版(上海)八年级下册数学预习复习必会知识点提纲知识梳理一:一次函数【要点梳理】知识点一:一次函数的概念1、一般的解析式形如: (是常数,且)的函数叫做一次函数。2、一次函数的定义域是一切实数。3、当时,解析式就成为(是常数,且),这时的正比例函数。4、一般的,我们把函数(为常数)叫做常值函数。它的自变量由所讨论的问题决定。知识点二:一次函数的图像与性质1、一般地,一次函数(是常数,且)的图像是一条直线2、一般地,直线()与轴的交点坐标是(0,)。直线()的截距是。3、一般地,一次函数()的图像可由正比例函数的图像平移得到。当时,向上平移个单位;当时,向下平移个单位。如果,那么直线与直线平行

    2、。反过来,如果,直线与直线平行,那么,。4、由一次函数的函数值 (或),就得到关于的一元一次不等式(或),在一次函数的图像上且位于轴上方(或下方)的所有点,他们的横坐标的取值范围就是不等式(或)的解集。5、一般来说,一次函数(为常数,且)具有以下性质: 当时,函数值随自变量的值增大而增大; 当时,函数值随自变量的值增大而减小。6、正比例函数是特殊的一次函数,它的性质与一次函数的性质是一致的。7、直线()过点(0,)且与直线平行。由直线在直角坐标平面内的位置情况可知: 当,且时,直线经过第一、二、三象限; 当时,直线经过第一、三、四象限; 当时,直线经过第一、二、四象限; 当时,直线经过第二、三

    3、、四象限。把上述判断反过来叙述也是正确的【知识梳理二】代数方程一:整式方程:【要点梳理】要点一、一元整式方程1. 一元整式方程:如果方程中只有一个未知数且两边都是关于未知数的整式,这个方程叫做一元整式方程;2.一元n次方程:一元整式方程中含未知数的项的最高次数是(是正整数),这个方程叫做一元次方程.3.一元高次方程概念:一元整式方程中含有未知数的项的最高次数是,若次数是大于2的正整数,这样的方程统称为一元高次方程。要点诠释:一元高次方程应具备:整式方程;只含一个未知数;含未知数的项最高次数大于2次.要点二、二项方程1.概念:如果一元n次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那

    4、么这样的方程就叫做二项方程.要点诠释:注 :=0(a0)是非常特殊的n次方程,它的根是0.这里所涉及的二项方程的次数不超过6次.2.一般形式: 3. 二项方程的基本方法:是(开方)4.解的情况:当n为奇数时,方程有且只有一个实数根,;当n为偶数时,如果ab0,那么方程没有实数根.要点三、双二次方程1.概念:只含有偶数次项的一元四次方程. 要点诠释:当常数项不是0时,规定它的次数为0.2.一般形式:3.解题的一般步骤:换元解一元二次方程回代4.解双二次方程的常用方法:因式分解法与换元法(目的是降次,使它转化为一元一次方程或一元二次方程)通过换元,把双二次方程转化为一元方程体现了“降次”的策略。要

    5、点诠释:解高于一次的方程,基本思想就是“降次”,对有些高次方程,可以用因式分解的方法降次。用因式分解的方法时要注意:一定要使方程的一边为零,另一边可以因式分解。二:分式方程:【要点梳理】要点一、分式方程分式方程的定义:分母中含有未知数的方程叫做分式方程.要点诠释:(1)分式方程的重要特征:是等式;方程里含有分母;分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程看联系:分式方程可以转化为整式方程. 要点二、分式方程的解法1、解分式的基本思想:将分式方程转化

    6、为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.2、解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 要点诠释:1、熟练掌握用“去分母”法求解分式方程的方法.2、了解用“换元法”

    7、解特殊的分式方程(组).3、领会分式方程“整式化”的化归思想和方法.要点三、解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)

    8、解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.三:无理方程【要点梳理】要点一、无理方程方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理方程.要点诠释:简单说,根号下含有未知数的方程,就是无理方程要点二、有理方程 整式方程和分式方程统称为有理方程.要点三、代数方程有理方程和无理方程统称为代数方程.要点诠释:代数方程的共同点是:其中对未知数所涉及的运算是加、减、乘、除、乘方、开方等基本运算.要点四、解无理方程的一般步骤1.含有一个根式(根式内有未知数的)的无理方程的解题步骤:移项,

    9、使方程左边是含未知数的根式,其余都移到另一边;两边同时乘方(若二次根式就平方,三次根式就立方)得整式方程;解整式方程;验根;写答案.要点诠释: 解简单无理方程的一般步骤,用流程图表示为:2.含有两个根式(根式内含有未知数)的无理方程的解题步骤:移项,使方程等式的左边只含一个根式,其余移到另一边;两边同时平方,得到只含有一个根式的无理方程;以下与1步骤相同.要点诠释: 解无理方程的关键在于把它转化为有理方程,转化的基本方法是对方程两边同时乘方从而去掉根号,对于简单的无理方程,可通过“方程两边平方”来实施。要点五、代数方程分类整式方程有理方程分式方程代数方程无理方程四:二元二次方程和二元二次方程组

    10、【要点梳理】要点一、二元二次方程1. 定义:仅含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,叫做二元二次方程.要点诠释:(a、b、c、d、e、f都是常数,且a、b、c中至少有一个不为零),其中叫做这个方程的二次项,a、b、c分别叫做二次项系数,叫做这个方程的一次项,d、e分别叫做一次项系数,f叫做这个方程的常数项.2.二元二次方程的解 能使二元二次方程左右两边的值相等的一对未知数的值,叫做二元二次方程的解.要点诠释:二元二次方程有无数个解;二元二次方程的实数解的个数有多种情况.要点二、二元二次方程组1.概念:仅含有两个未知数,各方程都是整式方程,并且含有未知数的项的最高次数为2,

    11、这样的方程组叫做二元二次方程组.要点诠释:不能认为由两个二元二次方程组成的方程组才叫二元二次方程组,由一个二元一次方程和一个二元二次方程组成的方程组,也是二元二次方程组.2. 二元二次方程组的解: 方程组中所含各方程的公共解叫做这个方程组的解. 要点三、二元二次方程组的解法1. 代入消元法代入消元法解“二一”型二元二次方程组的一般步骤: 把二元一次方程中的一个未知数用另一个未知数的代数式表示; 把这个代数式代入二元二次方程,得到一个一元二次方程; 解这个一元二次方程,求得未知数的值; 把所求得的未知数的值分别代入二元一次方程,求得另一个未知数的值;所得的一个未知数的值和相应的另一个未知数的值分

    12、别组在一起,就是原方程组的解; 写出原方程组的解.要点诠释:(1)解一元二次方程、分式方程和无理方程的知识都可以运用于解“二一”型方程组;(2)“二一”型方程组最多有两个解,要防止漏解和增解的错误. 2、因式分解法 (1) 当方程组中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二一”型方程组,解得这两个“二一”型方程组,所得的解都是原方程组的解. (2) 当方程组中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程分解所得的每一个二元一次方程组成新的方程

    13、组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程组的解.要点四、方程(组)的应用应用二元二次方程组解应用题的一般步骤:(1)审题;(2)设未知数(2个);(3)列二元二次方程组;(4)解方程组;(5)检验是否是方程的解以及是否符合实际;(6)写出答案.要点诠释: 一定要检验一下结果是否符合实际问题的要求【知识梳理三】:四边形一:多边形【要点梳理】知识点一、多边形的概念1定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形其中,各个角相等、各条边相等的多边形叫做正多边形2相关概念:边:组成多边形的各条线段叫做多边形的边顶点:每相邻两条边的公共端点叫

    14、做多边形的顶点内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形。凸多边形凹多边形 要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n边形的一个顶点可以引(n-3)条对角线,n边形对角线的条数为;(3)过n边形的一个顶点的对角线可以把n边形分成(n-

    15、2)个三角形知识点二、多边形内角和定理 n边形的内角和为(n-2)180(n3)要点诠释: (1)内角和定理的应用:已知多边形的边数,求其内角和;已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于;知识点三、多边形的外角和 多边形的外角和为360要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和n边形的外角和恒等于360,它与边数的多少无关; (2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于; (3)多边形的外角和为360的作用是:已知各相等外角度数求多边形边数;已知多边形边数求各相等外角的度数二:平行四边形【要点梳理】要点一、平行

    16、四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”. 要点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.要点二、平行四边形的性质 1边的性质:平行四边形两组对边平行且相等;2角的性质:平行四边形邻角互补,对角相等;3对角线性质:平行四边形的对角线互相平分;4平行四边形是中心对称图形,对角线的交点为对称中心. 要点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等

    17、或两角互补;对角线的性质可以证明线段的相等关系或倍半关系.(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.要点三、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.两组对边分别相等的四边形是平行四边形;3.一组对边平行且相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判

    18、定平行四边形的依据,也可作为“画平行四边形”的依据.要点四、平行线间的距离1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值.(2)平行线间的距离处处相等任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度.两条平行线间的任何两条平行线段都是相等的. 2.平行四边形的面积: 平行四边形的面积底高;等底等高的平行四边形面积相等.三:特殊的平行四边形【要点梳理】要点一、矩形、菱形、正方形的定义有一个角是直角的平行四边形叫做矩形.有一组邻边相等的平行四边形叫做菱形. 有一组邻边

    19、相等并且有一个内角是直角的平行四边形 叫做正方形.要点二、矩形、菱形、正方形的性质矩形的性质:1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴. 菱形的性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;3.菱形是轴对称图形,它有两条对称轴. 正方形的性质:1.正方形四个角都是直角,四条边都相等.2.正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角.3.正方形是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.要点三、矩形、菱形、正方形的判定矩形的判定

    20、:1. 有三个角是直角的四边形是矩形.2. 对角线相等的平行四边形是矩形.3. 定义:有一个角是直角的平行四边形叫做矩形.要点诠释:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形. 菱形的判定:1. 四条边相等的四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3. 定义:有一组邻边相等的平行四边形是菱形.要点诠释:前一种方法是在四边形的基础上加上四条边相等.后两种方法都是在平行四边形的基础上外加一个条件来判定菱形,正方形的判定:1.有一组邻边相等的矩形是正方形. 2.有一个内角是直角的菱形是正方形.要点四、特殊平行四边形之间的关系要点五、顺次连接特殊的平

    21、行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.要点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形. (2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.四:梯形【要点梳理】知识点一、梯形的概念一组对边平行,另一组对边不平行的四边形叫梯形. 在梯形中,平行的两边叫做梯形的底,较短的底叫做上底,较长的底叫做下底,

    22、不平行的两边叫做梯形的腰,夹在两底之间的垂线段叫做梯形的高,一腰和底的夹角叫做底角. 要点诠释:(1)定义需要满足三个条件:四边形;一组对边平行;另一组对边不平行.(2)有一组对边平行的四边形有可能是平行四边形或梯形,关键在于另一组对边的位置或者数量关系的不同.梯形只有一组对边平行,而平行四边形两组对边都平行;平行四边形中平行的边必相等,梯形中平行的一组对边必不相等.(3)在识别梯形的两底时,不能仅由两底所处的位置决定,而是由两底的长度来决定梯形的上、下底.知识点二、等腰梯形的定义及性质1.定义:两腰相等的梯形叫等腰梯形.2.性质:(1)等腰梯形同一个底上的两个内角相等. (2)等腰梯形的两条

    23、对角线相等. 要点诠释:(1)等腰梯形是特殊的梯形,它具有梯形的所有性质. (2)由等腰梯形的定义可知:等腰相等,两底平行. (3)等腰梯形同一底上的两个角相等,这是等腰梯形的重要性质,不仅是“下底角”相等,两个“上底角”也是相等的.知识点三、等腰梯形的判定 1.用定义判定:两腰相等的梯形是等腰梯形.2.判定定理:(1)同一底边上两个内角相等的梯形是等腰梯形. (2)对角线相等的梯形是等腰梯形.知识点四、辅助线 梯形问题常常是通过作辅助线转化为特殊的平行四边形及三角形问题加以研究,一些常用的辅助线做法是: 方法 作法 图形 目的 平移平移一腰 过一顶点作一腰的平行线 分解成一个平行四边形和一个

    24、三角形过一腰中点作另一腰的平行线 构造出一个平行四边形和一对全等的三角形 平移对角线 过一顶点作一条对角线的平行线 构造出平行四边形和一个面积与梯形相等的三角形 作高 过一底边的端点作另一底边的垂线 构造出一个矩形和两个直角三角形;特别对于等腰梯形,两个直角三角形全等 延长延长两腰 延长梯形的两腰使其交于一点 构成两个形状相同的三角形 延长顶点和一腰中点的连线 连接一顶点和一腰的中点并延长与底边相交 构造一对全等的三角形,将梯形作等积变换 知识点五、三角形、梯形的中位线联结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.联结梯形

    25、两腰中点的线段叫梯形的中位线.梯形的中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.五:向量【要点梳理】要点一、平面向量1.有向线段:规定了方向的线段叫做有向线段. 有向线段的方向是从一点到另一点的指向,这时线段的两个端点有顺序,前一点叫做起点,另一点叫做终点,画图时在终点处画上箭头表示它的方向.要点诠释:(1)“有向线段AB”符号标记为,且表示点B相对于点A的位置差别.(2)用两个字母标记有向线段时,起点字母必须写在终点字母的前面.2.平面向量的定义及表示(1)向量: 既有大小又有方向的量叫做向量.其中向量的大小叫做向量的模(或向量的长度).要点诠释:向量的两要素:向量的大小、向量

    26、的方向.数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;而向量有方向,有大小,具有双重性,不能比较大小. 向量与有向线段的区别:(a)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,这两个向量就是相等的向量;(b)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.(2)向量的表示方法:小写英文字母表示法: 如等.几何表示法:用一条有向线段表示向量,如等.(3)向量的分类:固定向量:有大小、方向、作用点的向量;自由向量:只有大小、方向,没有作用点的向量.要点诠释:我们学习的主要是自由向量.3. 特殊的向量零向量:长度为零的

    27、向量叫零向量.单位向量:长度等于1个单位的向量.相等向量:长度相等且方向相同的向量.互为相反向量: 长度相等且方向相反的向量.平行向量:方向相同或相反的非零向量,叫平行向量(平行向量又称为共线向量).规定:与任一向量共线.要点诠释:(1)零向量的方向是任意的,注意与0的含义与书写的不同.(2)平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.(3)零向量、单位向量的定义都只是限制了大小.要点二、平面向量的加法运算1. 定义:求两个向量的和向量的运算叫做向量的加法.2. 运算法则:(1)三角形法则:一般来说,求不平行的两个向量的和向

    28、量时,只要把第二个向量与第一个向量首尾相接,那么以第一个向量的起点为起点、第二个向量的终点为终点的向量就是和向量.这样的规定叫做向量的加法的三角形法则。(2)多边形法则:一般地,几个向量相加,可把这几个向量顺次首尾相接,那么它们的和向量是以第一个向量的起点为起点、最后一个向量的终点为终点的向量,这样的规定叫做几个向量相加的多边形法则.(3)平行四边形法则:如果是两个不平行的向量,那么求它们和向量时,可以在平面内任取一点为公共起点,作两个向量分别与相等;再以这两个向量为邻边作平行四边形;然后以所取的公共起点为起点,作这个平行四边形的对角线向量,则这一对角线向量就是和的向量.要点诠释:1.两个向量

    29、的和是一个向量,规定. 2.可用平行四边形或三角形法则进行运算,但要注意向量的起点与终点.3. “向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n个向量连加,即得到几个向量相加的多边形法则.4.探讨该式中等号成立的条件,可以解决许多相关的问题.3.运算律:(1)交换律:;(2)结合律:要点三、向量的减法运算1.定义:已知两个向量的和及其中一个向量,求另一个向量的运算叫做向量的减法. 2.运算法则: 在平面内任取一点,以这点为公共起点作出这两个向量,那么它们的差向量是以减向量的终点为起点、被减向量的终点为终点的向量,这样求两个向量的差向量的规定叫做向量减法的三角形的法则

    30、.要点诠释:(1)减去一个向量等于加上这个向量的相反向量,即:,从而用加法法则来解决减法问题.(2)向量的加法、减法的结果仍然是向量,规定.(3)与长度相等、方向相反的向量,叫做的相反向量,即.知识梳理五:随机概率一随机事件和概率要点一、必然事件、不可能事件和随机事件1.定义:(1)必然事件在一定条件下重复进行试验时,在每次试验中必然会发生的事件,叫做必然事件(2)不可能事件 在每次试验中都不会发生的事件叫做不可能事件(3)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.要点诠释:1.必然发生的事件和不可能发生的事件均为“确定事件”,随机事件又称为“不确定事件”;2.要知道事件

    31、发生的可能性大小首先要确定事件是什么类型.一般地,必然发生的事件发生的可能性最大,不可能发生的事件发生的可能性最小,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同.要点二、概率的意义概率是从数量上刻画了一个随机事件发生的可能性的大小.一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数附近,那么这个常数就叫做事件A的概率(probability),记为.要点诠释:(1)概率是频率的稳定值,而频率是概率的近似值;(2)概率反映了随机事件发生的可能性的大小;(3) 事件A的概率是一个大于等于0,且小于等于1的数,即,其中P(必然事件)=1,P(不可能事件)=0,

    32、0P(随机事件)1.二:概率的计算要点一、古典概型 满足下列两个特点的概率问题称为古典概型.(1) 一次试验中,可能出现的结果是有限的;(2) 一次试验中,各种结果发生的可能性相等的.古典概型可以从事件所包含的各种可能的结果在全部可能的试验结果中所占的比例分析事件的概率.要点诠释:如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=.要点二、用列举法求概率常用的列举法有两种:列表法和树形图法.1. 列表法:当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.列表法是用表格的形

    33、式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.要点诠释:(1)列表法适用于各种情况出现的总次数不是很大时,求概率的问题;(2)列表法适用于涉及两步试验的随机事件发生的概率.2. 树形图:当一次试验要涉及3个或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树形图.树形图是用树状图形的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.要点诠释:(1) 树形图法同样适用于各种情况出现的总次数不是很大时,求概率的问题;(2)在用列表法或树形图法求可能事件的概率时,应注意各种情况出现的可能性务必相同.要点三、利用频率估计概率当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.要点诠释:用试验去估计随机事件发生的概率应尽可能多地增加试验次数,当试验次数很大时,结果将较为精确.第 25 页 共 25 页

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:沪教版(上海)八年级下册数学预习复习必会知识点提纲(实用!).docx
    链接地址:https://www.163wenku.com/p-3899002.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库