书签 分享 收藏 举报 版权申诉 / 29
上传文档赚钱

类型《机械工程控制基础》第五版配套课件2Routh判据.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:3897641
  • 上传时间:2022-10-23
  • 格式:PPT
  • 页数:29
  • 大小:298.67KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《《机械工程控制基础》第五版配套课件2Routh判据.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    机械工程控制基础 机械工程 控制 基础 第五 配套 课件 Routh 判据
    资源描述:

    1、5.1.25.1.2 关于稳定性的一些提法关于稳定性的一些提法1 1、(李亚普诺夫)意义下的稳定性(李亚普诺夫)意义下的稳定性 由上分析可知,对于定常性系统而言,系统由一由上分析可知,对于定常性系统而言,系统由一定初态此起的响应随着时间的推移只有三种:定初态此起的响应随着时间的推移只有三种:衰衰减到零;发散到无穷大;趋于等幅谐波振荡。减到零;发散到无穷大;趋于等幅谐波振荡。从从而定义了系统是而定义了系统是稳定的;不稳的;临界稳定稳定的;不稳的;临界稳定的。的。但对于但对于非线性系统非线性系统而言,这种响应随着时间的推而言,这种响应随着时间的推移不仅可能有上述三种情况,而且还可能移不仅可能有上述

    2、三种情况,而且还可能趋于某趋于某一非零的常值或作非谐波的振荡一非零的常值或作非谐波的振荡,同时还可能由,同时还可能由初态不同初态不同,这种响应随着时间推移的结果也不同。,这种响应随着时间推移的结果也不同。俄国学者俄国学者A.M.A.M.在统一考虑了在统一考虑了线性与非线性系统稳定性问题后,于线性与非线性系统稳定性问题后,于18821882年对系年对系统稳定性提出了严密的数学定义,这一定义可以统稳定性提出了严密的数学定义,这一定义可以表述如下表述如下 如图如图5.1.45.1.4所示,若所示,若o o为系统的平衡工作点,为系统的平衡工作点,扰动使系统偏离此工作点心扰动使系统偏离此工作点心起始偏差

    3、(即初态)起始偏差(即初态)不超过域不超过域 ,由扰动引起的输出(这种初态引起,由扰动引起的输出(这种初态引起的零输入响应)及其终态不超过预先给定的某值,的零输入响应)及其终态不超过预先给定的某值,即不超出域即不超出域 ,则系统称为稳定的,或称为,则系统称为稳定的,或称为意义下稳定。意义下稳定。这也就是说,若要求系统的输出不能超出任意给这也就是说,若要求系统的输出不能超出任意给定的正数,能在初态为定的正数,能在初态为 式中式中 则系统称为在则系统称为在意义下稳定;反之,若要求系统的输出不能超出意义下稳定;反之,若要求系统的输出不能超出任意给定的任意给定的正数正数 ,但却不能找到不为零的,但却不

    4、能找到不为零的正数正数 来满足式来满足式(5.1.6)(5.1.6),则系统称为在,则系统称为在意义下不稳定。意义下不稳定。()()(0),()(0),kkxxtt 的情况下 满足输出为(5.1.6)(5.1.6)0,1,2,k 2 2、渐近稳定性、渐近稳定性 渐近稳定性渐近稳定性就是前面对线性系统定义的稳定就是前面对线性系统定义的稳定性,它要求由初态引起的响应最终衰减到零,性,它要求由初态引起的响应最终衰减到零,一般所讲的线性系统的稳定性,也就是渐近稳一般所讲的线性系统的稳定性,也就是渐近稳定性,当然,也是定性,当然,也是意义下的稳意义下的稳定性;但对非线系统而言,这两种稳定性是不定性;但对

    5、非线系统而言,这两种稳定性是不同的。同的。比较渐近稳定性与比较渐近稳定性与意义下的稳意义下的稳定性可知,前者比后者对系统的稳定性的要求定性可知,前者比后者对系统的稳定性的要求高,系统若是渐近稳定的则一定是高,系统若是渐近稳定的则一定是意义下稳定的,反之则不尽然。意义下稳定的,反之则不尽然。3 3、“小偏差小偏差”稳定性稳定性“小偏差小偏差”稳定性又称稳定性又称“小稳定小稳定”或或“局部稳定局部稳定性性”。由于实际系统往往存在非线性,因此系统的动力由于实际系统往往存在非线性,因此系统的动力学方程往往是建立在学方程往往是建立在“小偏差小偏差”线性化的基础之线性化的基础之上的。在偏差较大时,线性化带

    6、来的误差太大,上的。在偏差较大时,线性化带来的误差太大,因此,因此,用线性化方程来研究的稳定性时,就只限用线性化方程来研究的稳定性时,就只限于讨论初始偏差(初态)不超出某一微小范围时于讨论初始偏差(初态)不超出某一微小范围时的稳定性,称之为的稳定性,称之为“小偏差小偏差”稳定性。稳定性。初始偏差初始偏差大时,就不能用来讨论系统的稳定性。大时,就不能用来讨论系统的稳定性。稳定的基本概念和系统稳定的充要条件设一线性定常系统原处于某一平衡状态,若它瞬间受到某一扰动作用而偏离了原来的平衡状态,当此扰动撤消后,系统仍能回到原有的平衡状态,则称该系统是稳定的。反之,系统为不稳定。线形系统的稳定性取决于系统

    7、的固有特征(结构、参数),与系统的输入信号无关。闭环特征方程式的根须都位于S的左半平面 0)(limtgt系统稳定充要条件5.2劳斯稳定判据(Rouths stability criterion)5.2.1劳斯表线性系统稳定闭环特征方程式的根必须都位于S的左半平面。充要条件稳定判据 令系统的闭环特征方程为)553(000122110 aaSaSaSaSannnnn如果方程式的根都是负实部,或实部为负的复数根,则其特征方程式的各项系数均为正值,且无零系数。)改写为都是正值,则式(其中553,2121 pp0)()()()(22221111210 jSjSjSjSPSPSa)563(0)2)(2(

    8、)(222222212112210 SSSSPSPSa即证明 设,21pp 为实数根,2211,jj为复数根 不会有系数为零的项线性系统稳定必要条件将各项系数,按下面的格式排成老斯表)553(000122110 aaSaSaSaSannnnn102113212321343212753116420fSeeSdddScccSabbbSaaaaSaaaaSnnnn 121211141713131512121311170613150412130211,eeddefbbaabcbbaabcbbaabcaaaaabaaaaabaaaaab 表中这样可求得n+1行系数 如果劳斯表中第一列的系数均为正值,则其

    9、特征方程式的根都在S的左半平面,相应的系统是稳定的。如果劳斯表中第一列系数的符号有变化,其变化的次数等于变化的次数等于该特征方程式的根在该特征方程式的根在S S的右半平面上的个数的右半平面上的个数,相应的系统为不稳定。劳斯稳定判据 已知一调速系统的特征方程式为0103.25175.41423SSS例5-1试用劳斯判据判别系统的稳定性。解:列劳斯表401423103.25.380103.25.4105171SSSS结论:(1)该表第一列系数符号不全为正,因而系统是不稳定的;(2)且符号变化了两次,所以该方程中有二个根在S的右半平面。已知某调速系统的特征方程式为 例5-20)1(16705175.

    10、4123KSSS求该系统稳定的K值范围。解:列劳斯表)1(167005.41)1(16705175.410)1(16705.41051710123KSKSKSS由劳斯判据可知,若系统稳定,则劳斯表中第一列的系数必须全为正值。可得:0)1(16700)1(2.40517KK9.111K5.2.2 劳斯判据特殊情况 劳斯表某一行中的第一项等于零,而该行的其余各项不等于零或没有其余项。若劳斯表第一列中系数的符号有变化,其变化的次数就等于该方程在S右半平面上根的数目,相应的系统为不稳定如果第一列 上面的系数与下面的系数符号相同,则表示该方程中有一对共轭虚根存在,相应的系统也属不稳定是以一个很小的正数来

    11、代替为零的这项解决的办法据此算出其余的各项,完成劳斯表的排列请看例题已知系统的特征方程式为02223SSS试判别相应系统的稳定性。2)(022110123SSSS例5-3由于表中第一列上面的符号与其下面系数的符号相同,表示该方程中有一对共轭虚根存在,相应的系统为(临界)不稳定。解:列劳斯表劳斯表中出现全零行 用系数全为零行的上一行系数构造一个辅助多项式,并以这个辅助多项式导数的系数来代替表中系数为全零的行。完成劳斯表的排列。解决的办法这些大小相等、径向位置相反的根可以通过求解这个辅助方程式得到,而且其根的数目总是偶数的。相应方程中含有一些大小相等符号相反的实根或共轭虚根。相应的系统为不稳定请看

    12、例题例如,一个控制系统的特征方程为 0161620128223456SSSSSS列劳斯表16038166248000161220161221620810123456SSSSSSS2,2jj显然这个系统处于临界(不)稳定状态。ssssF16122)(24ssdssdF248)(30)4)(2(2)86(216122)(222424ssssssssF5.2.3 劳斯判据的应用实际系统希望S左半平面上的根距离虚轴有一定的距离。为变量的特征方程式,然后用劳斯判据去判别该方程中是否有根位于垂线此法可以估计一个稳定系统的各根中最靠近右侧的根距离虚轴有多远,从而了解系统稳定的“程度”。azass1代入原方程

    13、式中,得到以 1sa01sas稳定判据能回答特征方程式的根在S平面上的分布情况,而不能确定根的具体数据。解决的办法设右侧。请看例题5.2.3 劳斯判据的应用用劳斯判据检验下列特征方程041310223SSS是否有根在S的右半平面上,并检验有几个根在垂线1S的右方。例5-41sa0解:列劳斯表 42.121081304101320123SSSS第一列全为正,所有的根均位于左半平面,系统稳定。令1 ZS代入特征方程:04)1(3)1(10)1(223ZZZ014223ZZZ式中有负号,显然有根在1S的右方。列劳斯表12114120123SSSS第一列的系数符号变化了一次,表示原方程有一个根在垂直直

    14、线1S的右方。041310223SSS请看例题已知一单位反馈控制系统如图3-21所示,试回答 例5-5)(sR)(sCsKt)(10)5(20sss)(sGc1)(sGc时,闭环系统是否稳定?图3-21单位反馈控制系统方块图ssKsGpc)1()(时,闭环系统的稳定条件是什么?1)(sGc特征方程为0205015020)10)(5(23SSSSSS排劳斯表 20152075020155010123SSSS 第一列均为正值,S全部位于左半平面,故 时,闭环系统的解:系统稳定ssKsGpc)1()(开环传递函数)10)(5()1(20)()(2SSSSKsGsGpc闭环特征方程为 0)1(20)1

    15、0)(5(2SKSSSp020205015234ppKSKSSS列劳斯表pppppppKsKKKKsKKsKsKps2015/)20750(20152015207502015207500201520501091234未完待续 利用劳斯稳定判据可确定系统一个或两利用劳斯稳定判据可确定系统一个或两个可调参数对系统稳定性的影响。个可调参数对系统稳定性的影响。欲使系统稳定第一列的系数必须全为正值 0pK 5.37020750ppKK020525015152075001520750)151520750(20pppppKKKKK5.26pK5.260pKn例题:P185 5.5n系统的传递函数方框图如图所

    16、示。试确定K和取何值时,系统将维持以角频率 的持续振荡。12s解法:n由题意知 系统处于等幅振荡状态,这说明系统是临界稳定的,又振荡频率为2rad/s,即闭环系统必具有共轭虚根+-j2.上述情况在与Routh计算表中出现S1行各元素均为零的现象对应,因为只有这样才可能由S2行元素构成的辅助方程式解出一对共轭虚根。令此共轭虚根等于+-j2便可确定参数K和a的值。32101201(2)11sKsaKaKKsasK劳斯表:依据:n等幅振荡状态等幅振荡状态临界稳定临界稳定有纯虚根。有纯虚根。(1)P157最后一段话最后一段话(2)P164 第第2点点(3)P165 5.2节最后一句话。节最后一句话。另解:将另解:将+-jW代入闭环特征方程式,得到关代入闭环特征方程式,得到关于实部和虚部的两个方程。可求解出未知于实部和虚部的两个方程。可求解出未知参数。参数。n(简便简便)补充题:n某系统闭环特征方程如下:试判断系统不在左半平面的极点数。54220SSS5432101012028002010002ssssss劳斯表:

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《机械工程控制基础》第五版配套课件2Routh判据.ppt
    链接地址:https://www.163wenku.com/p-3897641.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库