书签 分享 收藏 举报 版权申诉 / 106
上传文档赚钱

类型《机械工程测试技术基础》课件第1章.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:3896943
  • 上传时间:2022-10-23
  • 格式:PPT
  • 页数:106
  • 大小:6.79MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《《机械工程测试技术基础》课件第1章.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    机械工程测试技术基础 机械工程 测试 技术 基础 课件
    资源描述:

    1、第一章 信号及描述第一节第一节 信号的分类与描述信号的分类与描述第三节第三节 瞬变非周期信号与连续频谱瞬变非周期信号与连续频谱第二节第二节 周期信号与离散频谱周期信号与离散频谱1第一节第一节 信号的分类与描述信号的分类与描述一一概述概述二二信号的分类信号的分类三三信号的时域和频域描述信号的时域和频域描述2交通信号灯信息信号信息的载体是光信号红灯亮黄灯亮绿灯亮停止通行注意一、概述一、概述3信号的定义:信号的定义:物理角度,物理角度,数学角度,数学角度,工程角度。工程角度。信号就是承载某种或某些信息的物理量的变化历程。信号就是承载某种或某些信息的物理量的变化历程。信号就是函数,就是某一变量随时间或

    2、频率或其他变信号就是函数,就是某一变量随时间或频率或其他变量而变化的函数。量而变化的函数。信号表现为一组数据或波形,这组数据通常是由某一信号表现为一组数据或波形,这组数据通常是由某一检测仪器,如传感器,从某一物理系统上检测得到的,检测仪器,如传感器,从某一物理系统上检测得到的,以数据的形式记录在纸上,或存储在某种磁性介质上,以数据的形式记录在纸上,或存储在某种磁性介质上,或以波形形式显示在仪器的显示屏上。或以波形形式显示在仪器的显示屏上。4简谐振动信号测试系统结构框图简谐振动信号测试系统结构框图5n如心电图,就是利用仪器从人体上获得的心脏跳如心电图,就是利用仪器从人体上获得的心脏跳动的数据,通

    3、常显示在仪器上供医生诊断之用,动的数据,通常显示在仪器上供医生诊断之用,或记录在纸上作为病人病例记录。或记录在纸上作为病人病例记录。6 信号的分类主要是依据信号波形特征来划分信号的分类主要是依据信号波形特征来划分的,在介绍信号分类前,先建立信号波形的概念。的,在介绍信号分类前,先建立信号波形的概念。信号波形:信号波形:被测信号的幅度随时间的变化的历被测信号的幅度随时间的变化的历程称为信号波形。程称为信号波形。信号波形信号波形电容传声器电容传声器齿轮啮合振动齿轮啮合振动二、信号的分类二、信号的分类 9常见标准信号波形常见标准信号波形010 信号波形图:信号波形图:用被测物理量的强度作为纵坐标,用

    4、被测物理量的强度作为纵坐标,用时间做横坐标,记录被测物理量随时间的变化情用时间做横坐标,记录被测物理量随时间的变化情况。况。11 为深入了解信号的物理实质,将其进行分类研究为深入了解信号的物理实质,将其进行分类研究是非常必要的,从不同角度观察信号,可分为:是非常必要的,从不同角度观察信号,可分为:n从信号描述上:从信号描述上:确定性信号与非确定性信号;确定性信号与非确定性信号;n从信号幅值和能量:从信号幅值和能量:能量信号与功率信号;能量信号与功率信号;n从分析域:从分析域:时域与频域;时域与频域;n从连续性:从连续性:连续时间信号与离散时间信号;连续时间信号与离散时间信号;n从可实现性:从可

    5、实现性:物理可实现信号与物理不可物理可实现信号与物理不可实现信号。实现信号。121、确定性信号与非确定性信号、确定性信号与非确定性信号 可以用明确数学关系式描述的信号称为可以用明确数学关系式描述的信号称为确定性信号确定性信号。不能用数学关系式描述的信号称为不能用数学关系式描述的信号称为非确定性信号非确定性信号。信号非确定性信号确定性信号非平稳随机信号平稳随机信号非周期信号周期信号简单周期信号一般周期信号准周期信号瞬态信号13a)周期信号:按一定时间间隔周而复始出现的信号 x(t)=x(t+nT)简单周期信号一般周期信号14 00sintmkXtx谐波信号谐波信号频率单一的正弦或余弦信号。频率单

    6、一的正弦或余弦信号。简单周期信号:简单周期信号:信号的信号的“波形波形”15+=x1(t)=A1Sin(1t+1)=A1Sin(21t+1)=10Sin(23t+/6)x2(t)=A2Sin(2t+2)=A2Sin(2 2t+2)=5Sin(22t+/3)x3(t)=10Sin(23t+/6)+5Sin(22t+/3)+=由多个乃至无穷多个频率成分叠加而成,叠加后存在公共周期的信号一般周期信号:00.511.522.53-10-50510(a)mm00.511.522.53-505(b)mm00.511.522.53-10010(c)mmt t t 00.511.522.53-10-50510

    7、mm00.511.522.53-505(b)mmt t 00.511.522.53-10-50510(a)mmt16周期性三角波 周期性方波 17b)非周期信号:再不会重复出现的信号。准周期信号:由多个周期信号合成,其中至少有一对频率比不是有理数。)3sin()2sin()(2211tAtAtx18瞬态信号:在有限时间段内存在,或随着时间的增加而幅值衰减至零的信号。00sintmkxetxt019(a)锤击物体的力信号锤击物体的力信号(b)T段为汽车加速过程信号段为汽车加速过程信号(c)半个正弦信号半个正弦信号(d)矩形窗信号矩形窗信号20c)非确定性信号:不能用数学式描述,其幅值、相位变化不

    8、可预知,所描述物理现象是一种随机过程。平稳与非平稳噪声信号(平稳)噪声信号(非平稳)统计特性变异21)()()()(均离散信号的幅值和独立变量数字信号独立变量离散一般离散信号离散信号独立变量连续一般连续信号均连续信号的幅值与独立变量模拟信号连续信号信号2.连续信号与离散信号时间时间幅值幅值连续连续离散离散被采样信号被采样信号模拟信号模拟信号连续连续离散离散量化信号量化信号数字信号数字信号22(a)汽车速度连续信号汽车速度连续信号(b)开水房锅炉水温度的变开水房锅炉水温度的变化连续信号化连续信号 23(c)每日股市的指数变化 (离散信号)(d)某地每日的平均气温变化(离散信号)(e)每隔5分钟测

    9、定开水房锅炉水的温度变化(离散信号)(f)每隔2微妙对正弦信号采样获得的离散信号 243.能量信号与功率信号 a)能量信号 当信号x(t)在所分析的区间(-,),能量为有限值的信号称为能量信号,满足条件:一般持续时间有限的瞬态信号是能量信号。dttx)(225b)功率信号功率信号 当信号当信号x(t)在所分析的区间(在所分析的区间(-,),能量),能量。此时,在有限区间。此时,在有限区间(t1,t2)内的平均功率是有限的。内的平均功率是有限的。一般一般持续时间无限持续时间无限的信号都属于功率信号。的信号都属于功率信号。噪声信号噪声信号一般周期信号一般周期信号dttx)(221)(1212ttd

    10、ttxtt26)3102sin(10)2sin()sin()(0000tftAtAtxl信号的时域描述:以时间为独立变量,其强调信号的幅值随时间变化的特征。l信号的频域描述:以角频率或频率为独立变量,其强调信号的幅值和相位随频率变化的特征。三、信号的时域和频域描述信号的信号的“域域”时域频域270220)()()(000tTATtAtxnTtxtx时域描述:时域描述:直接观测或记录到的信号,以时直接观测或记录到的信号,以时间为独立变量的,称其为信号的时域描述。间为独立变量的,称其为信号的时域描述。28 频域描述:频域描述:以频率作为变量的,称其为信号的频域以频率作为变量的,称其为信号的频域描述

    11、。描述。周期信号的频域描述周期信号的频域描述29第二节第二节 周期信号与离散频谱周期信号与离散频谱一一傅立叶级数三角展开傅立叶级数三角展开二二傅立叶级数复指数展开傅立叶级数复指数展开30时域分析时域分析反映信号的幅值随时间的变化情况,反映信号的幅值随时间的变化情况,频域分析频域分析反映信号的频率组成和各频率分量大小反映信号的频率组成和各频率分量大小。图例:受噪声干扰的多频率成分信号图例:受噪声干扰的多频率成分信号 31 信号频域分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从另一个角度来了解信号的特征。8563ASPECTRUM ANALYZER 9 kHz-26.5 GHz傅

    12、里叶傅里叶变换变换一一.周期信号的频谱分析周期信号的频谱分析傅立叶级数三角展开傅立叶级数三角展开32时间幅值频率时域分析频域分析 信号的频谱信号的频谱X(f)代表了信号在不代表了信号在不同频率分量处信同频率分量处信号成分的大小,号成分的大小,它能够提供比时它能够提供比时域信号波形更直域信号波形更直观,丰富的信息。观,丰富的信息。u时域分析与频域分析的关系时域分析与频域分析的关系谱线33 在有限区间上,一个周期信号x(t)当满足狄里赫利条件时可展开正交函数线性组合的无穷正交函数线性组合的无穷级数,如三角函数集的傅里叶级数。级数,如三角函数集的傅里叶级数。式中,T周期,周期,0基波圆频率,基波圆频

    13、率,。n注意:an是n或n0的偶函数,a-n=an;n bn是n或n0的奇函数,b-n=-bn。0001()(cossin)nnnx taantbnt2/2/0cos)(2TTntdtntxTa2/2/0sin)(2TTntdtntxTb/20/21()TTax t d tT02/T 狄里赫利条件狄里赫利条件:(1)函数在一周期内极大值与极小值为有限个。)函数在一周期内极大值与极小值为有限个。(2)函数在一周期内间断点为有限个。)函数在一周期内间断点为有限个。(3)在一周期内函数绝对值积分为有限值)在一周期内函数绝对值积分为有限值。dttfT0)(即即信号x(t)的另一种形式的傅里叶级数表达式

    14、:式中,An称信号频率成分的幅值,n称初相角。n注意:An是n或n0的偶函数,A-n=An;n bn是n或n0的奇函数,-n=-n。n 并可知:001()cos()nnnx taAnt)(22nnnnnnabarctgbaA n1,2,nnnnnnAbAasincosn1,2,小结与讨论1.式中第一项a0为周期信号中的常值或直流分量;2.从第二项依次向下分别称信号的基波或一次谐波、二次谐波、三次谐波、n次谐波;3.将信号的角频率0作为横坐标,可分别画出信号幅值An和相角n随频率0变化的图形,分别称之为信号的幅频谱和相频谱图。例1 求图所示的周期方波信号x(t)的傅里叶级数及其频谱。解:信号x(

    15、t)在它的一个周期中的表达式为:有:图周期方波信号 20,102,1)(TttTtx2/2/00cos)(2TTntdtntxTa注意:本例中x(t)为一奇函数,而cosn0t为偶函数,两者的积x(t)cosn0t也为奇函数,而一个奇函数在上、下限对称区间上的积分值等于零。;sin)(;cos)(;)(2/2/022/2/022/2/10000000000TTTnTTTnTTTtdtntxbtdtntxadttxa可得周期方波信号的傅里叶级数表达式为:6,4,2,0,5,3,1,4cos12)cos(1cos12sinsin)1(2sin)(22/00002/002/0002/02/2/0nn

    16、nnntnntnnTtdtntdtnTtdtntxTbTTTTTTn)5sin513sin31(sin4)(000ttttx周期方波信号的频谱图;sin)(;cos)(;)(2/2/022/2/022/2/10000000000TTTnTTTnTTTtdtntxbtdtntxadttxa周期函数的奇偶特性周期函数的奇偶特性若周期函数若周期函数x(t)为奇函数,即为奇函数,即x(t)=-x(-t)0/24000;0;()sin;nTnTaabx tntdt1000sincos)(nnntnbtnaatx10sin)(nntnbtx100cos)(nntnaatx 若若周期函数周期函数x(t)偶函

    17、数,即偶函数,即x(t)=x(-t)/2200/2400();()cos;0TTTnTnax t dtax tntdtb;sin)(;cos)(;)(2/2/022/2/022/2/10000000000TTTnTTTnTTTtdtntxbtdtntxadttxa40)(tx0tA20T20T0T周期性三角波周期性三角波作业作业:周期性三角波的三角频谱周期性三角波的三角频谱41周期信号周期信号频谱特频谱特点点 1、由于、由于 为整数,各频率分量仅在为整数,各频率分量仅在 的频率处取值,因的频率处取值,因而得到的是关于幅值而得到的是关于幅值 和相角和相角 的离散谱线的离散谱线 2、诸分量频率都是

    18、基波频率的整数倍、诸分量频率都是基波频率的整数倍 3、各频率分量的谱线高度表示该谐波的幅值和相位角,工程、各频率分量的谱线高度表示该谐波的幅值和相位角,工程上常见的信号,其谐波幅值总的趋势是随谐波次数的增高而上常见的信号,其谐波幅值总的趋势是随谐波次数的增高而减小的。减小的。nnA0nn421000100)sin()()sincos()(nnnnnntnAatxtnbtnaatx周期信号的频谱具有周期信号的频谱具有离散性离散性、谐波谐波 性性和和收敛性收敛性三个特点。三个特点。n欧拉公式欧拉公式)1(sincos000jtnjtnetjn)(21cos000tjntjneetn)(2sin00

    19、0tjntjneejtn10)(2)(20000ntjntjnntjntjnneebjeeaa100022ntjnnntjnnnejbaejbaa00aC)(21nnnjbaC)(21nnnjbaCtjnnntjnnneCeCCtx00110)(则那么令1000sincos)(nnntnbtnaatxtjnnntjnnntjnnneCeCeC000110二、傅里叶级数的复指数函数展开式:二、傅里叶级数的复指数函数展开式:an是n的偶函数,a-n=an;bn是n的奇函数,b-n=-bn。即即,2,1,0)(0neCtxtjnnn)(21nnnjbaC2/2/0000cos)(2TTntdtntx

    20、Ta2/2/0000sin)(2TTntdtntxTb2/2/002/2/000000sin)(2cos)(2212TTTTnnntdtntxTjtdtntxTjbaC2/2/0000)(1TTtjnndtetxTC由所以即即2/2/00000sincos)(1TTdttnjtntxT44tnjtnetjn00sincos0一般情况下,一般情况下,Cn是复数是复数njnnInRneCjCCC|22nInRnCCCnRnInCCarctgCn与与C-n共轭共轭*nnCCnn把周期函数把周期函数x(t)展开为傅立叶级数以后,作关系图展开为傅立叶级数以后,作关系图 CnR0称为实频图称为实频图 Cn

    21、I0称为虚频图称为虚频图|Cn|0称为称为双边幅频双边幅频图,图,n=-+,n=-+,n0称为称为双边双边相频图相频图2/2/0000)(1TTtjnndtetxTC45例例2:画出正弦函数画出正弦函数sin0t的频谱图。的频谱图。0nRC)(2sin000tjtjeejt,2,1,0)(0neCtxtjnnntjtjtjnnnejejeCt0001)1(02121sin在 0处:0nRC21nIC21nC2n0nRC21nIC21nC2n在 0处:2jCn2jCn46一般周期函数实频谱总是偶对称的,虚频谱总是奇对称的。一般周期函数实频谱总是偶对称的,虚频谱总是奇对称的。实频图虚频图双边幅频图

    22、双边相频图单边幅频图47)(21)(212cos2sin)(0000222200tftftftfeeeejtftftx21nRC21nIC22nC4n21nRC21nIC22nC4n0f处:在 0f处:在 实频图虚频图双边幅频图双边相频图002()21122ftf tjeje(1)(1)48例例3:画出:画出 的双边频谱。的双边频谱。)42sin(2)(0tftx作业作业.画出画出x3(t)=10Sin(23t+/6)+5Sin(22t+/3)的频谱的频谱00.511.522.53-10010mmt 49解:有 图 周期矩形脉冲00000/2/2/2/2/2/2/2/2000000001111

    23、()sinsinsin1 222220,1,2,2jntjnjnTjntjntnTeeeCx t edtedtTTTjnTjnnnnnnT jjnTnT 由于0=2/T,代入上式得定义则上式变为可得到周期矩形脉冲信号的傅里叶级数展开式为 ,2,1,0,sinnTnTnTCnsinsin()defc,2,1,0,2sinsin0nncTTncTCnntjnntjnneTncTeCtx00sin)(的图像的图像:52sin)(sinC周期矩形脉冲的频谱(T=4)信号的脉冲宽度相同而周期不同时,其频谱变化情形:图 信号周期与频谱的关系 一一傅里叶变换傅里叶变换二二傅里叶变换的主要性质傅里叶变换的主要

    24、性质三三几种典型信号的频谱几种典型信号的频谱第三节第三节 瞬变瞬变非周期非周期信号与连续频谱信号与连续频谱55非非周周期期信信号号准周期信号准周期信号 信号中各简谐成分信号中各简谐成分 的的频率比为无理数频率比为无理数 具有具有离散频谱离散频谱瞬变信号瞬变信号 在一定时间区间内在一定时间区间内 存在或随时间的增存在或随时间的增 长长衰减至零衰减至零准周期信号准周期信号x(t)0tx(t)0t瞬变瞬变信号信号I0tx(t)瞬变瞬变信号信号IItAtAtx31sin9sin)(ttxtsine)(5657周期信号周期信号x(t),在,在-T/2,T/2区间内区间内,2,1,0)(0neCtxtjn

    25、nn式中,式中,当当T时,时,积分区间由积分区间由-T/2,T/2变为变为(-,);0lim()j tnTCTx t edt 0=2/T 0,离散频率离散频率n0连续变量连续变量。一一.瞬变非周期信号频谱的求取方法瞬变非周期信号频谱的求取方法0/2/21()TjntnTCx t edtT5858 X()为单位频宽上的谐波幅值,具有为单位频宽上的谐波幅值,具有“密度密度”的的含义,故把含义,故把X()称为瞬态信号的称为瞬态信号的“频谱密度函数频谱密度函数”,或简称或简称“频谱函数频谱函数”。0()limlimnnTfCXCTf一般为复数,用一般为复数,用X()表示表示为:为:X()称为信号称为信

    26、号x(t)的的傅立叶变换。傅立叶变换。()()j tXx t edtlim()j tnTCTx t edt59u傅立叶逆变换傅立叶逆变换当当T时,时,0=2/T0,0=d离散频率离散频率n0连续变量连续变量 求和求和积分。则:积分。则:,2,1,0)(0neCtxtjnnn0001()limlim2jntjntnnTTnnx tTC eTC eT1()()2j tx tXedx(t)为为X()的的傅立叶傅立叶逆变换逆变换(反变换)(反变换)()()j tXx t edt0/2/21()TjntnTCx t edtT周期信号周期信号瞬变非周期信号瞬变非周期信号u傅立叶变换对傅立叶变换对由于=2(

    27、)()j tXx t edt1()()2j tx tXed()()FTIFTx tX2()()jftX fx t edt2()()jftx tX fedf()()()jfXfXfe22()Re ()Im ()Im()()Re()X fX fX fX ffarctgX f-f 连续连续幅值谱幅值谱-f 连续连续相位谱相位谱 fX f2211()()(2)2()22j tjftjftx tXedXfedfX fedf61矩形窗函数矩形窗函数fTfTTeefjfTjfTjsin)(212()()jftX fx t edt0(2)()1(22)0(2)RtTw tTtTtT 矩形窗函数矩形窗函数 2(

    28、)()jftRRWfw t edt222222211TTftjTTftjefjdte)(sinfTCT例例:矩形窗函数矩形窗函数 的频谱的频谱f6262()Rw t()Rw t矩形窗函数频谱()RW f例:单边指数衰减函数的频谱例:单边指数衰减函数的频谱642()()jftX fx t edtu周期和非周期信号幅值谱的区别周期和非周期信号幅值谱的区别|X()|为连续频谱,而为连续频谱,而|Cn|为离散频谱;为离散频谱;|Cn|的量纲和信号幅值的量纲一致,即的量纲和信号幅值的量纲一致,即振幅,而振幅,而|X()|的量纲相当于的量纲相当于|Cn|/,为单,为单位频宽上的幅值,即位频宽上的幅值,即“

    29、频谱密度频谱密度函数函数”,振幅振幅/频率(如频率(如cm/Hz)。)。非周期信号幅值谱|X()|与周期信号幅值谱|Cn|之间的区别:65二二.傅立叶变换的性质傅立叶变换的性质a.若若x(t)是实函数是实函数a1.若若x(t)为实偶函数,则为实偶函数,则ImX()=0,而,而X()是实偶函数;是实偶函数;a2.若若x(t)为实奇函数,则为实奇函数,则ReX()=0,而,而X()是虚奇函数;是虚奇函数;b.若若x(t)是虚函数是虚函数b1.若若x(t)为虚偶函数,则为虚偶函数,则ReX()=0,而,而X()是虚偶函数;是虚偶函数;b2.若若x(t)为虚奇函数,则为虚奇函数,则ImX()=0,而,

    30、而X()是实奇函数。是实奇函数。2()()()cos2()sin2()+()jftemX fx t edtx tftdtjx tftdtR X fjIX f1.奇偶虚实性66()cos2()()sin2()emx tftdtR X fjx tftdtjI X f()cos2()()sin2()mex tftdtjI X fjx tftdtR X f如果有 则 11()()x tXf22()()x tXf1 1221122()()()()c x tc x tc Xfc Xf2.线性叠加性证明 21 122221 1221122()()()()()()jftjftjftc x tc x t edt

    31、c x t edtc x t edtc Xfc Xf例子:求下图波形的频谱例子:求下图波形的频谱+X1(f)X2(f)用线性叠加定理简化用线性叠加定理简化3.对称性 若若:(时域信号时域信号)x(t)X()(频域信号频域信号),则,则 X(t)x(-)69()X f()XtTT2T2T1T1T1T1T2T2T对称性对称性:X(t)x(-f)证明:证明:互换互换 t 和和 f从而:从而:X(t)x(-f)ffXtxftjde)()(2fefXtxftd)()(2jttXfxftjde)()(2702()()jftX fx t edt4.时间尺度改变特性时间尺度改变特性 若若 ,则则对于实常数 ,

    32、有 71()()xtX f1()fx ktXkkk当时域尺度压缩(1)时,对应的频域展宽且幅频谱谱线高度减小;当时域尺度展宽(1),则信号的频宽压缩,则信号的频宽压缩k倍,而倍,而幅值变为原幅值变为原来的来的k倍倍。sin()()RfTWfTfTk=1-10-9-8-7-6-5-4-3-2-1012345678910-10123tmm(a)窗 函 数 频 谱 图(T=3)-10-9-8-7-6-5-4-3-2-1012345678910-0.500.51tmm(b)窗 函 数 频 谱 图(T=1)-10-9-8-7-6-5-4-3-2-1012345678910-10123tmm(a)窗 函

    33、数 频 谱 图(T=3)-10-9-8-7-6-5-4-3-2-1012345678910-0.500.51tmm(b)窗 函 数 频 谱 图(T=1)7213k 时间尺度改变性时间尺度改变性 证明:证明:j2j2()()()ed11()d()()ftfktkF x ktx kttfx kt ektXkkk2j2j1()()ed11()edfkfkF x ktxkfxXkkk(k 0)(k 1,变化速,变化速度加快)等效于在频域扩展(频带加宽);反之亦然。度加快)等效于在频域扩展(频带加宽);反之亦然。735.时移性若若 ,则在时域中信号沿时间轴平移一常值,则在时域中信号沿时间轴平移一常值t0

    34、(时时移移),则,则020()()jftx tteX f对应如果信号在时域中如果信号在时域中延迟了时间延迟了时间t0,其频谱幅值不会改变,而,其频谱幅值不会改变,而相频谱中各次谐波的相频谱中各次谐波的相移相移-2t0,与,与频率成正比。频率成正比。74()()x tX f例 求图所示矩形脉冲函数的频谱。解:该函数可视为一个中心位于坐标原点的矩形脉冲时移至t0点位置所形成,则其傅里叶变换及幅频谱和相频谱分别为 02()sin()jftX fTcfT e00()sin()2,sin()0()2,sin()0X fTcfTt fcfTft fcfT证明:证明:若若 t0为常数为常数 则则 时移结果时

    35、移结果只改变信号的相频谱,不改变信号的幅频谱只改变信号的相频谱,不改变信号的幅频谱时移性质时移性质 02j0e)()(ftfXttx000j200j2()j200j2()()ed()eed()()eftf t tftftF x ttx tttx ttttX f0j201()()eftafF x attXaa75()()x tXf图 x(t)cos0t的频谱 6.频移性若若 ,在频域中信号沿频率轴平移一,在频域中信号沿频率轴平移一常值常值0(频移频移),则),则tfjetxffX020)()(证明:证明:若若 f0为常数为常数 则则 频移性质频移性质 100101010j2010j2()11j2

    36、j211j2j211j2()()ed()()ed()eede()ede()ftfftf tf tf tf tf tFX ffX ffffffX ffX ffX ffx t令77tfjetxffX020)()(时域表达式时域表达式例例:求被截取的余弦信号的频谱函数求被截取的余弦信号的频谱函数000|0|cos)(TtTtttx787.卷积定理对于任意两个对于任意两个函数函数x1(t)和和x2(t),定义它们的卷积为:定义它们的卷积为:dtxxtxtx)()()(*)(2121若若x1(t)X1(),x2(t)X2(),则则1.两个函数在两个函数在时域中的卷积时域中的卷积,对应于,对应于频域中的乘

    37、积频域中的乘积2.两个函数在两个函数在时域中的乘积时域中的乘积,对应于,对应于频域中的卷积频域中的卷积 x1(t)*x2(t)X1()X2()x1(t)x2(t)X1()*X2()79时域卷积特性证明时域卷积特性证明 对于对于x1(t)和和x2(t),定义它们的卷积为:定义它们的卷积为:dtxxtxtx)()()(*)(2121若若x1(t)X1(),x2(t)X2(),则则x1(t)*x2(t)X1()X2()()()()()()()()()()()(*)(212212)(22122122121fXfXdefXxddteetxxddtetxxdtedtxxtxtxFfjfjtfjftjftj

    38、 801X(f)频域卷积特性证明频域卷积特性证明 对于对于 和和 ,定义它们的卷积为:定义它们的卷积为:1212()*()()()XfXfXXfd若若x1(t)X1(),x2(t)X2(),则则x1(t)x2(t)X1()*X2()1212122122()21222122112()*()()()()()()()()()()()()()jftjftjftjtjtjtFXfXfXXfdedfXXfedf dXXfeedf dXx t edx tXedx t x t 811()Xf2()Xfnnttxd)(d)(2 jfXfnffXtxftde)()(2jffXfttxftde)()2 j(d)(d

    39、2jd()(j2)()dx tFf X ftd()(j2)()dnnnx tFfX ft8.8.微分特性:微分特性:证明:证明:同理:同理:828384能量信号和功率信号 n能量(energy)信号:例如:在右图所示的单自由度振动系统中:由弹簧所积蓄的弹性势能为 x2(t);若x(t)表达为运动速度,则x2(t)反映的是系统的运动中的动能。定义:当x(t)满足关系式 则称信号x(t)为有限能量信号,简称能量信号。矩形脉冲、衰减指数信号等均属这类信号。dttx2)(图 单自由度振动系统 n功率(power)信号:当信号满足条件 亦即信号具有有限的(非零)平均功率,则称信号为有限平均功率信号,简称

    40、功率信号。2/2/2)(1lim0TTTdttxT功率信号的傅里叶变换 只有满足狄里赫利条件的信号才具有傅里叶变换,即 。有限平均功率信号,它们在(-,)区域上的能量可能趋近于无穷,但它们的功率是有限的,即满足利用函数和某些高阶奇异函数的傅立叶变换来实现这些函数的傅立叶变换。0)(dttx2/2/2)(1limTTTdttxTP三、几种典型信号的频谱三、几种典型信号的频谱在在时间内激发时间内激发矩形矩形脉冲脉冲 (或(或三角三角脉冲、脉冲、双边指双边指数数脉冲,脉冲,钟形钟形脉冲)所包含的脉冲)所包含的面积为面积为1;1.单位脉冲函数单位脉冲函数(t)及其频谱及其频谱0lim()()tt0t)

    41、(tS单位面积10t0t211)(t)(tS1各种单位面积为1的脉冲 矩形脉冲到函数函数 当当0时,时,的极限就称为的极限就称为单位脉冲函数单位脉冲函数,记作,记作(t),即(单位脉冲函数)。即(单位脉冲函数)。(1)(t)的定义的定义88()t()t()t()t从极限角度从极限角度:(2)(t)的特性000)(ttt从面积角度从面积角度:1)(lim)(0dttSdtt0t0t211)(t)(tS1矩形脉冲到矩形脉冲到函数函数 89()t(3)(t)乘积性乘积性0()()(0)()()()x ttxtx ttt000)(ttt00()()xttt0()lim()1t dtt dt90)0()

    42、()0()()0()()(xdttxdttxdtttx(4)(t)的筛选性的筛选性)(txt0t)(t0-1+1)(txt0-1+1)(txt0t)(t0-1+1)(txt0-1+1t0t0000000()()()()()()()x tt t dtx tt t dtx tt t dtx t)(txt0t)(t0-1+1)(txt0-1+1)(txt0t)(t0-1+1)(txt0-1+1t0t00()lim()1t dtt dt91n令令t-=t,则,则=t-t,d=-d t,代入则,代入则)()0(dtttx)()()()(*)(txdtxttx)()()()()()()(*)(dttttx

    43、dttttxdtxttx结果:结果:x(t)与与(t)的卷积等于的卷积等于x(t)。函数的卷积特性函数的卷积特性(5)(t)与其它信号的卷积与其它信号的卷积 92)()()()(*)(000ttxdttxtttx 结果:结果:(tt0)时卷积,就是将函数时卷积,就是将函数x(t)在发生脉在发生脉冲函数的坐标位置上重新作图冲函数的坐标位置上重新作图 当脉冲函数为(tt0)时,与函数x(t)的卷积 函数的卷积特性函数的卷积特性2 93(6)(t)的频谱的频谱2()()jftft edt逆变换:逆变换:dfetftj21)(t)1 据对称性:据对称性:1()0t)(t0)(f1函数的频谱函数的频谱

    44、10 e直流分量的频谱直流分量的频谱 94(t)1 1()根据时移特性根据时移特性:020)()(ftjefXttx对应tfjetxffX020)()(95020()jfttte020()jf teff根据频移特性根据频移特性:2.谐波函数余弦函数的频谱:0001cos2()()2f tffff00220cos 22jf ttjf teef teR00220()sin 22jf tjf ttj eef t正弦函数的频谱:0001sin 2()()2f tjffff3.周期函数的频谱 周期函数x(t)的傅里叶级数形式:式中x(t)的傅立叶变换为:v一个周期函数的傅里叶变换由无穷多个位于各谐一个周

    45、期函数的傅里叶变换由无穷多个位于各谐波频率上的单位脉冲函数组成。波频率上的单位脉冲函数组成。ntjnneCtx0)(dtetxTCtjnTTn0)(12200220()()()jnf tnnjnf tnnnnX fF x tFC eC F eCfnf4.周期单位脉冲序列的频谱周期单位脉冲序列的频谱 相等间隔的周期单位脉冲序列,常称为相等间隔的周期单位脉冲序列,常称为梳状函数梳状函数)()(nsnTttg式中,Ts周期,n整数,n=0,1,2,3,。ntnfjnseCtg2)(该函数为周期函数,s=1/Ts,用傅立叶级数的复指数形式表示:222222)(1)(1ssssssTTtnfjsTTtn

    46、fjsndtetTdtetgTCsT1时域时域中,序列的周期为中,序列的周期为Ts,频域频域中,序列的周期为中,序列的周期为1/Ts。时域时域中,幅值为中,幅值为1 ,频域频域中,幅值为中,幅值为1/Ts ntnfjsseTtg21)(11()()()snnsssnG ffnffTTT对对 进行傅立叶变换:进行傅立叶变换:s=1/Ts,100ntnfjnseCtg2)(020()jf teff()g tu频谱分析的应用频谱分析的应用 频谱分析主要用于识别信号中的周期分量,是信号分频谱分析主要用于识别信号中的周期分量,是信号分析中最常用的一种手段。析中最常用的一种手段。案例:案例:在齿轮箱故障诊

    47、断在齿轮箱故障诊断 通过齿轮箱振动信号频谱分通过齿轮箱振动信号频谱分析,确定各频率分量,然后根析,确定各频率分量,然后根据机床转速和传动链,据机床转速和传动链,找出故找出故障齿轮障齿轮。案例:案例:螺旋浆设计螺旋浆设计 可以通过频谱分析可以通过频谱分析确定螺确定螺旋浆的固有频率和临界转速旋浆的固有频率和临界转速,确定螺旋浆转速工作范围。确定螺旋浆转速工作范围。101n有一齿轮传动系统,大齿轮为输入轴,转速为600r/min,大、中、小齿轮的齿数分别为40,20,10。下面是在齿轮箱机壳上测得的振动信号功率谱:n请根据所学的频谱分析知识,判断是哪一个齿轮轴存在故障齿轮?第一章知识总结n机械量测量

    48、系统经常产生时变输出信号。即使很复杂的信号也能分解和分析成谐波分量的合成,每个分量都有不同的幅值、相位和频率。所有的确定性信号实际上都是如积木一般的简单正弦波的合成。n简单正弦波是最基本的信号形式,无论是在机械工程领域还是在电气工程领域,都可常见这种形式的变量。当一个函数的二阶导数与该函数成比例但符号相反时,则被称为一个变量的简谐函数。这种信号的频率可以用线频率或圆频率来描述。n有周期性方波、三角波两个周期信号,设它们的频率均为1000Hz。对这两个信号进行测量时,后续设备通频带的截止频率上限各应是多少?(设某次谐波的幅值降低到基波的1/10以下,则可以不考虑)第一章知识总结n复杂周期信号可用具有不同频率和幅值的简谐分量之和来表示,这些和称为傅里叶级数。n瞬变非周期信号也可用具有不同频率和幅值的简谐分量之和来表示,这些和称为该信号的傅里叶逆变换。n尽管分解出的所有的谐波分量都存在于信号中,但实际上所有的测量系统都有一定的上下限,超过这些界限的谐波就会给削弱。换言之,没有一个测试系统能对无限的频率范围有响应。第一章知识总结n如果要获得精确波形,无穷级数中的所有项都是必需的。当然,随着谐波阶次的增加,它们对总合的影响越来越小,小到可以忽略不计。n频谱图非常有用,因为它让我们可以一眼就看出信号中的频率成分。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《机械工程测试技术基础》课件第1章.ppt
    链接地址:https://www.163wenku.com/p-3896943.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库