高教版中职数学(基础模块)下册7.3《平面向量的内积》ppt课件3.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高教版中职数学(基础模块)下册7.3《平面向量的内积》ppt课件3.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面向量的内积 高教 版中职 数学 基础 模块 下册 7.3 平面 向量 内积 ppt 课件
- 资源描述:
-
1、7.3 7.3 平面向量的内积平面向量的内积【教学目标教学目标】知识目标:知识目标:(1)了解平面向量内积的概念及其几何意义)了解平面向量内积的概念及其几何意义.(2)了解平面向量内积的计算公式)了解平面向量内积的计算公式.为利用向量的内积研为利用向量的内积研究有关问题奠定基础究有关问题奠定基础.能力目标:能力目标:通过实例引出向量内积的定义通过实例引出向量内积的定义,培养学生观察和归纳的能培养学生观察和归纳的能力力【教学重点教学重点】平面向量数量积的概念及计算公式平面向量数量积的概念及计算公式.【教学难点教学难点】数量积的概念及利用数量积来计算两个非零向量的夹角数量积的概念及利用数量积来计算
2、两个非零向量的夹角【教学过程】*创设情境 兴趣导入Fs图721O30 如图如图721所示,水平地面上有一辆车,某人用所示,水平地面上有一辆车,某人用100 N的力,朝着与水平线成的力,朝着与水平线成 角的方向拉小车,使小车前角的方向拉小车,使小车前进了进了100 m那么,这个人那么,这个人做了多少功?做了多少功?30*动脑思考动脑思考 探索新知探索新知【新知识】【新知识】我们知道,这个人做功等于力与在力的方向上移动我们知道,这个人做功等于力与在力的方向上移动的距离的乘积如图的距离的乘积如图722所示,设水平方向的单位向所示,设水平方向的单位向量为量为i i,垂直方向的单位向量为,垂直方向的单位
3、向量为j j,则,则i+y ji+y jF xsin30cos30FiFj 即力即力F F是水平方向的力与垂直方向的力的和,垂直方是水平方向的力与垂直方向的力的和,垂直方向上没有产生位移,没有做功,水平方向上产生的位移向上没有产生位移,没有做功,水平方向上产生的位移为为s s,即,即 (J)30W WF Fcoss s100101050023OxijF(x,y)y 图图722这里,力这里,力F F与位移与位移s s都是向量,而都是向量,而功功W是一个数量,它等于由两个向是一个数量,它等于由两个向量量F F,s s的模及它们的夹角的余弦的的模及它们的夹角的余弦的乘积,乘积,W叫做向量叫做向量F
4、F与向量与向量s s的内积的内积,它是一个数量,又叫做数量积它是一个数量,又叫做数量积如图如图723,设有两个非零向量,设有两个非零向量a a,b b,作,作b b,由射线由射线OAOA与与OBOB所形成的角所形成的角a a,OA OB 叫做向量叫做向量a a与向量与向量b b的夹角,记作的夹角,记作b两个向量两个向量a,b b的模与它们的夹角的余弦之积叫做向量的模与它们的夹角的余弦之积叫做向量a a与向量与向量b b的内积的内积,记作,记作a ab b,即即 a ab ba a|b b|c cosos (7.10)(7.10)上面的问题中,人所做的功可以记作上面的问题中,人所做的功可以记作W
5、F Fs s.由内积的定义可知由内积的定义可知a a00,0a a0由内积的定义可以得到下面几个重要结果由内积的定义可以得到下面几个重要结果:时,时,a ab b|a a|b b|.|.(1 1)当当 0时,时,a ab b|a a|b b|;当;当 180(2)cos(2)cos|a ba b.(3 3)当当b ba a时,有时,有 0,所以,所以a aa a|a a|a a|a a|2 2,即,即|a a|a a (4 4)当当时,时,a ab b,因此,因此,a ab b因此对非零向量因此对非零向量a a,b b,有,有,90a bcos900,aba ab b0a ab.b.可以验证,
6、向量的内积满足下面的运算律:可以验证,向量的内积满足下面的运算律:(1)a(1)ab bb ba a(2 2)()b b(a ab b)a a(b b)a(3 3)(a ab b)c ca ac cb bc c注意:一般地,向量的内积不满足结合律,即注意:一般地,向量的内积不满足结合律,即 a a(b bc c)(a ab b)c c.请结合实例进行验证请结合实例进行验证.*巩固知识巩固知识 典型例题典型例题例例1 1 已知已知|a a|3,|b b|2,求求a ab b60解解 a ab b|a a|b b|cos|cos 32cos360例例2 2 已知已知|a a|b b|,a ab b
7、,求求 22解解 coscos|a ba b22222由于由于 00180所以所以 135*运用知识运用知识 强化练习强化练习1.1.已知已知|a a|7,|b b|4,a a和和b b的夹角为的夹角为,求,求a ab b602.2.已知已知a aa a9,求求|a a|3.3.已知已知|a a|2,|b b|3,,求,求(2a ab b)b b30*动脑思考 探索新知设平面向量设平面向量a a(x x1 1,y y1 1),),b b(x x2 2,y y2 2),i i,j j分别为分别为x x轴,轴,y y轴上的单位向量,由于轴上的单位向量,由于i ij j,故,故i ij j 0,又,
8、又|i i|j j|1,所以,所以a ab b(x x1 1 i iy y1 1j j)(x x2 2 i iy y2 2j j)x x1 1 x x2 2 i i i i x x1 1 y y2 2 i i j j x x2 2 y y1 1 i i j j y y1 1 y y2 2 j j j j x x1 1 x x2 2|j j|2 2 y y1 1 y y2 2|j j|2 2 x x1 1 x x2 2 y y1 1 y y2 2这就是说,两个向量的内积等于它们对应坐标乘积的这就是说,两个向量的内积等于它们对应坐标乘积的和,即和,即 a ab b x x1 1 x x2 2 y
展开阅读全文