(通用版)高考数学复习:高中数学公式及知识点速记总结汇编(实用必备!).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(通用版)高考数学复习:高中数学公式及知识点速记总结汇编(实用必备!).docx》由用户(wenku818)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 通用版 高考 数学 复习 高中数学 公式 知识点 速记 总结 汇编 实用 必备 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、【通用版】高考数学复习:高中数学公式及知识点速记总结汇编一、函数、导数1、函数的单调性(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,若,则为增函数;若,则为减函数.2、函数的奇偶性对于定义域内任意的,都有,则是偶函数;对于定义域内任意的,都有,则是奇函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。3、函数在点处的导数的几何意义函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是.*二次函数: (1)顶点坐标为;(2)焦点的坐标为4、几种常见函数的导数; ; ;5、导数的运算法则(1). (2). (3).6、会用导数求单调区间、极值、最值 7、求函数的极值的方
2、法是:解方程当时:(1) 如果在附近的左侧,右侧,那么是极大值;(2) 如果在附近的左侧,右侧,那么是极小值指数函数、对数函数分数指数幂 (1)(,且).(2)(,且).根式的性质(1)当为奇数时,;当为偶数时,.有理指数幂的运算性质(1) .(2) .(3).注: 若a0,p是一个无理数,则ap表示一个确定的实数上述有理指数幂的运算性质,对于无理数指数幂都适用.指数式与对数式的互化式: .对数的换底公式 : (,且,且, ). 对数恒等式:(,且, ).推论 (,且, ).常见的函数图象二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式 ,=.9、正弦、余弦的诱导公式(奇
3、变偶不变,符号看象限)的正弦、余弦,等于的同名函数,前面加上把看成锐角时该函数的符号;的正弦、余弦,等于的余名函数,前面加上把看成锐角时该函数的符号。,口诀:函数名称不变,符号看象限,口诀:正弦与余弦互换,符号看象限10、和角与差角公式 ;.11、二倍角公式 .公式变形: 12、 函数的图象变换的图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将
4、函数的图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象13. 正弦函数、余弦函数和正切函数的图象与性质:函数性质 图象定义域值域最值当时,;当 时,当时, ;当时,既无最大值也无最小值周期性奇偶性奇函数偶函数奇函数单调性在上是增函数;在上是减函数在上是增函数;在上是减函数在上是增函数对称性对称中心对称轴对称中心对称轴对称中心无对称轴14、辅助角公式 其中15.正弦定理:(R为外接圆的半径).16.余弦定理;.17.面积定理(1)(分别表示a、b、c边上的高).(2).18、三角形内角和定理 在ABC中,有.
5、19、与的数量积(或内积)20、平面向量的坐标运算(1)设A,B,则.(2)设=,=,则=.(3)设=,则21、两向量的夹角公式设=,=,且,则(=,=).22、向量的平行与垂直设=,=,且 . .*平面向量的坐标运算(1)设=,=,则+=.(2)设=,=,则-=. (3)设A,B,则.(4)设=,则=.(5)设=,=,则=.三、数列23、数列的通项公式与前n项的和的关系( 数列的前n项的和为).24、等差数列的通项公式;25、等差数列其前n项和公式为.26、等比数列的通项公式;27、等比数列前n项的和公式为 或 .四、不等式28、。必须满足一正(都是正数)、二定(是定值或者是定值)、三相等(
6、时等号成立)才可以使用该不等式)(1)若积是定值,则当时和有最小值;(2)若和是定值,则当时积有最大值.五、解析几何29、直线的五种方程 (1)点斜式 (直线过点,且斜率为)(2)斜截式 (b为直线在y轴上的截距).(3)两点式 ()(、 ().(4)截距式 (分别为直线的横、纵截距,)(5)一般式 (其中A、B不同时为0).30、两条直线的平行和垂直 若,;.31、平面两点间的距离公式(A,B).32、点到直线的距离 (点,直线:).33、 圆的三种方程(1)圆的标准方程 .(2)圆的一般方程 (0).(3)圆的参数方程 .* 点与圆的位置关系:点与圆的位置关系有三种若,则点在圆外;点在圆上
7、;点在圆内.34、直线与圆的位置关系直线与圆的位置关系有三种:;. 弦长=其中.35、椭圆、双曲线、抛物线的图形、定义、标准方程、几何性质椭圆:,离心率0,b0),离心率,渐近线方程是.抛物线:,焦点,准线。抛物线上的点到焦点距离等于它到准线的距离.36、双曲线的方程与渐近线方程的关系(1)若双曲线方程为渐近线方程:. (2)若渐近线方程为双曲线可设为. (3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,焦点在y轴上).37、抛物线的焦半径公式 抛物线焦半径.(抛物线上的点到焦点距离等于它到准线的距离。)38、过抛物线焦点的弦长.六、立体几何 第 18 页 共 18 页39.证明直线与直线
展开阅读全文