认知诊断理论培训课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《认知诊断理论培训课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 认知 诊断 理论 培训 课件
- 资源描述:
-
1、认知诊断理论认知诊断理论课程说明时间段授课内容上 午8:3011:30认知诊断理论概述晚 上认知诊断理论应用:认知诊断计算机化自适应测验(CD-CAT)认知诊断实操部分:MATLAB软件的使用认知诊断理论概述认知诊断理论的背景与基础1Q矩阵的重要地位与规则空间模型2常见认知诊断模型介绍3认知诊断评估的结果报告4认知诊断评估对我国学业评价的启示51、认知诊断理论的背景与基础、认知诊断理论的背景与基础认知诊断理论的背景v 教育问责制教育问责制(accountability in education)p 问责的含义问责的含义 Account:会计、账目清算;说明、解释:会计、账目清算;说明、解释 A
2、ccountability vs.Responsibilityp 教育问责的发展的脉络教育问责的发展的脉络 80s欧美教育文献的高频词欧美教育文献的高频词 No Child Left Behind Act(2002)Educational Accountability vs.Educative Accountability认知诊断理论的背景v 教育问责制教育问责制(accountability in education)p 问责制涉及的核心问题问责制涉及的核心问题 明确可行的教育目标和标准明确可行的教育目标和标准 相应的法律法规体系相应的法律法规体系 责任共担的教育性问责取向责任共担的教育性问
3、责取向 教育评测(教育评测(AssessmentAssessment)的作用)的作用 客观可靠的数据系统客观可靠的数据系统认知诊断理论的背景v 教育问责制教育问责制(accountability in education)No Child Left Behind Act(2002):强化测验在评估:强化测验在评估中的作用;中的作用;加强结果评估加强结果评估(consequential assessment)与教学之与教学之间的联系间的联系 学生学生(测验分数测验分数)学校与教师学校与教师v 形成性评估形成性评估(formative assessment)K-12评估的革新教育评估应该更好地反映
4、学生的教育评估应该更好地反映学生的学习,为教学提供反馈信息:学习,为教学提供反馈信息:l Cronbachs(1957):The Two Disciplines of Scientific Psychologyl Glasers(1976):conceptualization of an instructional psychology that would adapt instruction to students individual knowledge statesl 认知理论与心理计量模型的结合(Glaser&Silver,1994;Pellegrino,Baxter,&Glaser,
5、1999;Pellegrino,Chudowsky,&Glaser,2001)CTT与与IRT分数的局限分数的局限经典测验理论:1:X=T+E2:信度、效度、难度和区分度为指标传统统计分数项目反应理论:1:项目水平模型项目反应函数2:基于IRT的认知诊断模型的基础CTT和和IRT都只能将被试进行排序,无法获得更多的测验信息!都只能将被试进行排序,无法获得更多的测验信息!认知心理学的发展v 对被试问题解决过程的心理揭示 认知心理学认知心理学 学科心理学学科心理学 教育心理学教育心理学 学习心理学学习心理学v 认知属性(attribute)知识点知识点 技能技能 心理过程心理过程认知心理学的发展(
6、续)v 认知诊断的定义 对被试在测验所测属性或知识点对被试在测验所测属性或知识点(如通分、借位与约如通分、借位与约分等分等)上的掌握水平进行分类上的掌握水平进行分类(掌握还是未掌握掌握还是未掌握)通过认知诊断方法或模型确定被试的不可直接观测的通过认知诊断方法或模型确定被试的不可直接观测的认知结构或知识状态,认知结构或知识状态,确定被试已经掌握哪些属性,确定被试已经掌握哪些属性,哪些属性未掌握需要补救哪些属性未掌握需要补救除了二分,还可除了二分,还可以是多分的情况以是多分的情况测验分数的实质解构测验分数的实质解构传统测验认知诊断测验单个总分,21K每个属性都有一个分数90Messi90.Rona
7、ldoC1101110 0111010 传统测验理论传统测验理论认知诊断理论认知诊断理论20世纪80年代20世纪60年代传统测验理论认知诊断理论认知诊断理论(CDT)项目反应理论项目反应理论(IRT)概化理论概化理论(GT)经典测验理论经典测验理论(CTT)2、Q矩阵的重要地位与规则空间模型矩阵的重要地位与规则空间模型题目属性关联矩阵Q1111111011111100111110001111000011100000110000001题目属性关联矩阵Q77 (行代表属性,列代表题目)非统计的诊断方法v 教师观察:教师根据学生作业或考试表现主观判断;v 出声思维:根据Q矩阵界定的属性,对学生进行出
8、声思维考察;v 费时费力,难以区分随机因素对被试作答造成的影响;v 统计方法或测量方法:CTT&IRT CDT。认知诊断评估的基本过程模型选择模型选择分数报告分数报告认知分析认知分析认知属性分析:属性提取 属性层级关系界定 测验Q矩阵标识测验题目编制 认知诊断模型:模型选择 参数估计 统计收敛性 模型数据拟合检验分数报告:属性掌握概率 学习之路 学习优势剖面图常见的认知诊断模型认知诊断模型(Cognitive Diagnostic Model,CDM)线性逻辑斯蒂克测验模型(LLTM)(Fischer,1973)规则空间模型规则空间模型(RSM)(Tatsuoka,1983)统一模型(UM)(
9、DiBello,Stout,&Roussos,1995)融合模型(FM)(DiBello,Stout,&Roussos,1995)“噪音输入,确定性与门”模型(NIDA)(Maris,1999)“确定性输入,噪音确定性输入,噪音与与门门”模型模型(DINA)(Junker&Sijstma,2001)属性层级模型属性层级模型(AHM)(Leighton,Gierl,&Hunka,2004)“确定性输入,噪音或门”模型(DINO)(Templin&Henson,2006)广义的广义的DINA模型模型(G-DINA)(de la Torre,2011)认知诊断模型分类没有显式的项目特征函数(ICF)
10、p 规则空间模型(RSM)p 属性层级模型(AHM)p 严格意义上讲,RSM和AHM都不是统计模型而是分类模型有显式的ICFp 潜类别模型 DINA、DINO、NIDA、G-DINA,等等p 多维项目反应理论(MIRT)模型 补偿型模型:多维两参数逻辑斯蒂克模型(M2PLM)(Reckase,2009)非补偿型模型:多成分潜在特质模型(MLTM)(Whitely,1980)验证性的多验证性的多维模型有效维模型有效认知诊断模型分类(续)图示认知认知诊断诊断模型模型多维IRT模型:非补偿性模型:非补偿性模型:Whitely(1980):多成分潜在特质模型(MLTM)补偿性模型:补偿性模型:多维正态
11、肩形模型(MNO)多维Logistic模型(Reckase&McKinley,1982,1991,1997)潜类别模型:DINA模型 统一模型(Unified Model)融合模型(Fusion Model)规则空间模型规则空间模型属性层级模型属性层级模型认知诊断模型分类(续)值得注意的几点:p 与CDM一样,MIRT模型也具有认知诊断功能(Embretson&Yang,2013)p MIRT除了能够提供被试总的测验分数,还能提供被试在每个 维度上更为精细的领域分数(domain score)p 通过MIRT分析可以得到被试在每个分量表上的连续估计值用于 替代CDM提供的二分诊断结果(掌握/未
12、掌握)丁树良等(2012)认为CDM 特别适用于形成性评估,因为它涉及的属性较少且属性粒度也较小;但对于总结性评估(如学年测验、高校招生考试),由于涉及的属性较多,往往使用能力(能力粒度比属性粒度大)而非属性来标注Q矩阵,这时使用MIRT 进行诊断分析更为合适。认知诊断模型规则空间模型RSM的提出的提出p Tatsuoka(1981,1983)对被试的错误规则进行分析,提出了一种 叫做规则空间的剖面图分析方法,成为了最初的规则空间思想的 雏形 从带符号的减法例子中找出47种规则,其中27种是错误规则p Tatsuoka(1985)提出了RSM的成型构念认知诊断模型规则空间模型最初的错误规则分析
13、最初的错误规则分析错误规则1:改变括号里的符号,再按照正常的加法来完成题目错误规则2:通过大的减去小的得到结果,然后用第一个数的符号作为结果符号错误规则3:除简单的减法外,一律将减号变成加号处理错误规则4:一律拿大数减去小数,然后将大数的符号作为结果符号认知诊断模型规则空间模型认知诊断问题对应于统计模式分类问题认知诊断问题对应于统计模式分类问题p 将可观测的反应模式(ORP)与不可观测的认知结构(CS)或知识 状态(KS)或属性掌握模式(AMP)建立联系 由KS和测验蓝图Q可以确定理想反应模式(IRP)。如果Q中包括可达 矩阵R,可保证KS与IRP之间的一一对应 规则空间模型(RSM)通过维度
14、化简技术将m维(m代表题目数)IRP/ORP约简到二维的笛卡尔空间,从而建立ORP与IRP的关系认知诊断模型规则空间模型点击添加标题3PLM题目参数值题目参数值被试作答模式被试作答模式理想反应模式理想反应模式匹配分类RSM(Tatsuoka,1983,1985)广义距离广义距离(孙佳楠孙佳楠,2011,2013)直接匹配:匹配作答模式间接匹配:匹配(,)对认知诊断问题对应于统计模式分类问题认知诊断问题对应于统计模式分类问题(续续)p 被试分类的基本思想认知诊断模型规则空间模型规则空间模型的主要步骤规则空间模型的主要步骤p Q矩阵理论部分1.确定属性与题目间的关系并编制事件Q矩阵(inciden
15、ce Q matrix)2.界定属性间的先决关系(prerequisite)3.确定可能的属性掌握模式(AMP)4.计算理想反应模式(IRP)p 模式分类部分5.估计题目参数和被试参数6.建立二维的规则空间7.对实际作答模式进行分类并计算属性掌握概率8.检验分类的效度认知诊断模型规则空间模型1 确定属性与题目间的关系确定属性与题目间的关系p 邀请学科专家、教学专家及测量学家对已编制好已编制好的测验进行分析 确定属性与题目之间的关系 编制事件Q矩阵(incidence Q matrix)p 假设有K个属性和m个题目,可将Q矩阵记为QKm 题目1考核属性1和3,题目2测量属性2,题目5考核最后1个
16、属性10001001100110153Q认知设计认知设计矩阵矩阵认知诊断模型规则空间模型2 界定属性间的先决关系界定属性间的先决关系p 通过Q矩阵中行与行之间的关系比较得出属性间的先决关系 确定邻接矩阵A:仅反映属性间的直接先决关系 确定可达矩阵R:反映属性间的直接先决关系、间接关系及自反关系 对于不断增大的正整数n(n是1到K之间的数),当(A+I)n不再变化时,即可 得到R矩阵:R=(A+I)n Tatsuoka使用的理论有:图论(计算邻接矩阵与可达矩阵等)集合论(确定偏序关系与包含关系等)抽象代数(格、布尔格或布尔代数)布尔描述函数(BDF)认知诊断模型规则空间模型2 界定属性间的先决关
17、系界定属性间的先决关系(续续)p 给出属性先决关系,容易写出A矩阵和 R矩阵某属性先决关系图与右侧属性先决关系图相对应的A矩阵与R矩阵认知诊断模型规则空间模型3 确定可能的属性掌握模式确定可能的属性掌握模式(AMP)p 考查K个属性,最多有2K-1种AMP(不包括不掌握任何属性的零 向量)p 将每种AMP看成矩阵的1列,所有2K-1种AMP构成Qc矩阵p 删除Qc矩阵中不符合属性先决关系的列,得到简化事件Qr矩阵 (reduced Q matrix)p Qr可通过Tatsuoka(1995)的“删除法”或丁树良等丁树良等(2009)的的“扩扩 张法张法”(基于基于R矩阵直接扩充矩阵直接扩充)得
18、到Qr总共包括7种AMP,虚线左侧为R矩阵内容,虚线右侧为根据R矩阵“扩张”生成的新AMP认知诊断模型规则空间模型4 计算理想反应模式计算理想反应模式(IRP)p “理想”是指在不存在失误(slipping)和猜测(guessing)的情况下,被试作答反应完全由“被试有且只有掌握题目的所有属性,才 能正确作答该题目”的原则确定p 确定IRP有4种方法 符号说明 qi:Qr的第i列,代表第i个理想被试的AMP pj:Q的第j列,代表第j个题目的属性向量 方法1认知诊断模型规则空间模型4 计算理想反应模式计算理想反应模式(IRP)(续续)p 确定IRP有4种方法 方法2 方法3 方法4认知诊断模型
19、规则空间模型RSM中基于中基于AMP和和Q计算计算IRPSN掌握属性掌握属性属性掌握模式属性掌握模式 理想反应模式理想反应模式1none(0,0,0)(0,0,0,0)2A1(1,0,0)(0,0,0,0)3A2(0,1,0)(0,0,0,0)4A3(0,0,1)(0,1,0,0)5A1 A2(1,1,0)(0,0,0,1)6A1 A3(1,0,1)(1,1,0,0)7A2 A3(0,1,1)(0,1,1,0)8A1 A2 A3(1,1,1)(1,1,1,1)i1i2i3i4A11001A20011A31110Q矩阵认知诊断模型规则空间模型5 估计题目参数和被试参数估计题目参数和被试参数p 将
20、所有ORP与所有IRP合并成一个大的作答矩阵U 样本量越大,反应模式越丰富,参数估计也就越准确p 采用参数估计软件(如BILOG或PARSCALE)估计 所有题目的题目参数 所有被试的能力参数 包括IRP所对应的理想被试的能力值认知诊断模型规则空间模型6 建立二维的规则空间建立二维的规则空间p 将所有IRP和ORP都降维到二维的笛卡尔空间,再进行判别分类判别分类 定义能反映被试作答反应模式异常程度被试作答反应模式异常程度的指标f(X)()()()(XPPXf)(.,),(),()(21mPPPP)(.,),(),()(TTT.,21mxxxXmjjPmT1)(1)(认知诊断模型规则空间模型6
21、建立二维的规则空间建立二维的规则空间(续续)不失一般性,假设题目由易到难排序对于正常反应模式,被试在前t个题上的作答应该以1为主(xj前面的系数为正),在后m-t个题上的作答应该以0为主(xj前面的系数为负)。f(X)值越小,被试作答模式越正常;反之,被试作答模式越异常。mjjjxTPPPXf1)()()()()()()()()()(321mPPPP)()()()()()(121mttPPTPPP认知诊断模型规则空间模型6 建立二维的规则空间建立二维的规则空间(续续)p f(X)只能衡量当前被试总体中被试反应模式的异常程度p 为衡量当前被试总体以外被试的反应模式异常程度,需要对 f(X)进行标
22、准化0)(XfEmjjjjTPQPXfVar12)()()()()(2/1)(var()(XfXf可得到与所有IRP和ORP对应的点集),(认知诊断模型规则空间模型6 建立二维的规则空间建立二维的规则空间(续续)规则空间,圆卷对应IRP,十字星对应ORP认知诊断模型规则空间模型7 分类并计算属性掌握概率分类并计算属性掌握概率p 每个纯规则点对应一种认知错误类型(或认知结构)p 采用计算马氏距离的方法,将各个真实点判归到纯规则点p 为消除马氏距离带来的误判,可使用贝叶斯判别分析 qt为先验概率,一般为一致性分布或正态分布 若点击添加标题21()()xrjtjtDXRXR(,)jxjxjX(,)t
23、rtrtR1/()00var()tIf x 1(x)(R|X)(x)tttTtttq fPq f(|)(|)(,1,.),tltP RXP RXlt lTXR则认知诊断模型规则空间模型7 分类并计算属性掌握概率分类并计算属性掌握概率(续续)p 为消除马氏距离带来的误判,可使用贝叶斯判别分析 假设先验分布为正态分布点击添加标题11/2/21()exp(0.5()()(2)Tttttmtf xxx21/2/21/2/21exp(0.5(,)(2)(|)exp(0.5(,)(2)ttmttTttmttqMdx RP RXqMd x R认知诊断模型规则空间模型8 检验分类的效度检验分类的效度p KS是
24、潜在的,很难确认被试是否被正确分类p 最直接做法:比较RSM的分类结果与学生口头报告的结果 缺点是成本太高p 替代方法是控制补救法 首先诊断被试的KS,对学生没有掌握的属性或知识点进行补救教学,然后进行后测 如前测中未掌握的属性在后测中得到掌握,则说明RSM的分类有效p RSM假设:没有掌握的属性或知识点,如不补救不会自动掌握认知诊断模型规则空间模型小结:小结:RSM的贡献的贡献p RSM中提出的Q矩阵已成为认知诊断理论中的核心概念p RSM的图形化方法与分类的思想形象、直接、易于理解p RSM中的Q矩阵可用于构建潜在特质空间 之后的认知诊断模型无一例外地采用或借鉴这种做法 DiBello、R
25、oussos和Stout(2007)的综述中,明确指出有十四种 认知诊断方法使用Q矩阵,目前更多认知诊断模型属性层级模型AHM与与RSM的关系的关系p AHM是RSM的一种重要变式p AHM用于对层级相关的认知属性进行建模p AHM与RSM的相似点 AHM在“将ORP分类到IRP”方面类似于RSM AHM在生成IRP的过程中也采用了Tatsuoka的矩阵,如邻接矩阵A、可达矩阵R、事件矩阵Q以及简化Qr矩阵等认知诊断模型属性层级模型AHM与与RSM的关系的关系(续续)p AHM与RSM的不同点 对要求建模的认知属性所作的假设不同 AHM假设:认知属性层级相关,因此属性间相互依赖 RSM假设:认
展开阅读全文