书签 分享 收藏 举报 版权申诉 / 31
上传文档赚钱

类型第10章序列相关性课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:3859176
  • 上传时间:2022-10-19
  • 格式:PPT
  • 页数:31
  • 大小:264.65KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《第10章序列相关性课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    10 序列 相关性 课件
    资源描述:

    1、第第10章序列相关性章序列相关性Serial Correlation/AutocorrelationMain ContentslWhat is Serial correlation(Autocorrelation)?lThe consequences of serial correlationlHow to detect the serial correlation?lCorrections for serial correlationWhat is Serial correlation(Autocorrelation)?lThe assumption that errors correspo

    2、nding to different observations are uncorrelated often breaks down in time-series studies.lWhen the error terms from different(usually adjacent)time periods are correlated,we say that the error term is serially correlated.That is,lCov(ui,uj)0,i.e.E(ui,uj)0 for i j.Patterns of serial correlationReaso

    3、ns of serial correlationlInertia or sluggishnesslModel specification errors(omitted variables)What is Serial correlation(Autocorrelation)?lIn this chapter,we only deal with the problem of first-order serial correlation,in which errors in one time period are correlated directly with errors in the ens

    4、uing period.For example,ut=r ut-1+vtlSecond-order serial correlation will be ut=r1ut-1+r2ut-2+vtThe consequences of serial correlation(Autocorrelation)lOLS estimators will be still unbiased and consistent.take the simple regression as an example Y=b0+b1 X+ulWe know the OLS estimator of b1 is 1122111

    5、2iiiiiiiiiXX YXX uXXXXXX uEEXXbbbbb+The consequences of serial correlation(Autocorrelation)lThe R2 and adj-R2 are still consistent if the time series is stationary(thats r 1).Or else,for non-stationary time series,the R2 and adj-R2 may be invalid.The consequences of serial correlation(Autocorrelatio

    6、n)lOLS estimators will not be efficient.The variance of OLS estimators will be biased.12111122222122222211var2cov,varvarvar2,where,var,cov,.If there exists first ornn tttttjttjtttttjtttnn tjjxxttjtttjxttjxux xu uxuXX uXXxxTSSTSSx xuu uTSSxbbrr+1212der serial correlation,ie.However,OLS estimate of th

    7、e variance of is.So,in this case,OLS estimates of the variances of the partial coefficients are biased.tttiuuvXXrb+The consequences of serial correlation(Autocorrelation)lt-statistics and F-statistic will be misleading when there are serial correlation in error terms ut.lThe variance and standard er

    8、ror of the predicted value will be invalid.How to detect the serial correlation?lTime-sequence plotlRuns testlDurbin-Watson testTime sequence plot-4-2024e_t19601970198019902000yearExample:Real wages and productivity(Example 10-1)-4-2024e_t-4-2024e_t-1Runs testlFirst,get the sign of the residuals,et,

    9、for example,(-)(+)(-)(+)(-),that is,there are 9 negative signs,followed by 8 positive signs and so on.lThe same signs in the parentheses are called a run.lLet N is the number of observations,and N1 is the number of positive signs of the residuals,and N2 is the number of negative signs.And k is the n

    10、umber of runs.Runs testlSwed and Eisenhart give us a table of critical values.lH0:the residual e is stochastic,that is,there is no serial correlation.lHow to test?If the number of run in your model is less than or equal the critical value n1(table A-6a),and larger than or equal to the critical value

    11、 n2(A-6b),then we can reject the null hypothesis,H0,means there exists serial correlation.Runs test(example)lIf the signs of the residual is (-)(+)(-)(+)(-)9 8 4 2 3lThen,N1=8+2=10,N2=9+4+3=16,N=26,k=5,then the critical value at 5%significance is 8 and 19.So,if the runs in our model 8 or 19,we shoul

    12、d reject the null hypothesis H0.lThe number of runs in our model is 58,so we reject the H0,which mean there is serial correlation in our model.Durbin-Watson TestlDurbin and Watson put forward an d statistic(DW).lIn most software,d-value will be provided with R2,adj-R2(Eviews),in STATA,using command

    13、tsset year/*to describe the data is time series*/estat dwatson/*must using after reg*/dwstat/*the out of dated command*/21221ntttntteedeDurbin-Watson TestlThere must be a intercept term in the regression model;lIt only can be used to detect the first order serial correlation.That is,ut=r ut-1+vt,-1r

    14、1.lThere is no lagged dependent variable as explanatory variable.Ct=b0+b1Yt+b2Ct-1+utDurbin-Watson TestlWe can rewrite the Durbin-Watson d-stat as1221 2 1where,=ntttnttdeeerrrd-value-140210Durbin-Watson TestlIf the Durbin-Watson d-stat lies in(du,4-du),there is no serial correlation.lIf d4-dL,there

    15、are positive and negative serial correlation respectively.lIf dLddU,or 4-dUd4-dL,then we cant detect the serial correlation.0dLdU24-dU4-dL4Reject H0,Positive serial correlationAccept H0,there is no serial correlation.Reject H0,Negative serial correlationCan not identify.Can not identify.Durbin-Watso

    16、n Test:ProcedurelFirst regress Y on Xs,and get the residuals et.lCalculate the DW d-stat.May be given by software.lGiven the number of observations n and the number of explanatory variables k,check the critical value dL and dU.lUsing the rule to judge whether there is serial correlation.Real wages a

    17、nd productivity:DW testlTable 10_1.txtlinsheet using“table 10_1.txt”,clearltsset yearlreg rwage productldwstat or estat dwatsonld=0.2137 n=44 k=1ldL(44,1)=1.475 dU(44,1)=1.566ld Z0.05=1.645,reject H0.lStata command:estat durbinalt 10,1211andnhNn Varn VarrbbCorrections for serial correlation:Generali

    18、zed differencinglYt=b0+b1Xt+ut (1)lIf there is first-order serial correlation,that is,ut is AR(1)process.i.e.ut=r ut-1+vt,-1r1.lThen the model for next period is Yt-1=b0+b1Xt-1+ut-1lMultiple both sides,rYt-1=rb0+rb1Xt-1+rut-1(2)l(1)-(2),Yt-rYt-1=(1-rb0+b1Xt rXt-1)+(ut-rut-1),rewrite aslYt*=b0*+b1Xt*

    19、+vt,where vt is no serial correlation.Corrections for serial correlationlBut we dont know r,first we need to estimate it.There are several method to estimate r.l(1)If there are first-order serial correlation,i.e.ut=r ut-1+vt,-1r1.Then,we use model et=r et-1+vt to estimate r.l(2)estimate it from Durb

    20、in-Watson d-stat 2 1dr12dr Example:real wage and productivitylFirst regress rwages on product,and get residuals elThen regress e on e_n-1 without constant,and get the estimate of r 0.8708lThen transform to the new modellrwagest-0.87rwagest-1=b0*+b1(productt-0.87productt-1)+vtlGet the estimation of t

    21、he above equation,lrwagest-0.87rwagest-1=5.47+0.569(productt-0.87productt-1)Prais-Winsten transformationlUsually applied in small sample cases,take example 10.1 for instancelreplace r=sqrt(1-0.87082)*rwages in 1lreplace p=sqrt(1-0.87082)*product in 1 _ _c co on ns s 2 2.9 99 93 36 61 11 1 .9 92 21 1

    22、1 11 13 32 2 3 3.2 25 5 0 0.0 00 02 2 1 1.1 13 34 47 72 29 9 4 4.8 85 52 24 49 93 3 p p .7 78 83 35 59 90 09 9 .0 07 70 03 31 19 99 9 1 11 1.1 14 4 0 0.0 00 00 0 .6 64 41 16 67 79 96 6 .9 92 25 55 50 02 22 2 r r C Co oe ef f.S St td d.E Er rr r.t t P P|t t|9 95 5%C Co on nf f.I In nt te er rv va al

    23、l T To ot ta al l 4 43 32 2.9 95 56 67 76 69 9 4 43 3 1 10 0.0 06 68 87 76 62 21 1 R Ro oo ot t M MS SE E =1 1.6 61 14 41 1 A Ad dj j R R-s sq qu ua ar re ed d =0 0.7 74 41 12 2 R Re es si id du ua al l 1 10 09 9.4 43 30 01 16 62 2 4 42 2 2 2.6 60 05 54 48 80 00 04 4 R R-s sq qu ua ar re ed d =0 0.7

    24、 74 47 72 2 M Mo od de el l 3 32 23 3.5 52 26 66 60 08 8 1 1 3 32 23 3.5 52 26 66 60 08 8 P Pr ro ob b F F =0 0.0 00 00 00 0 F F(1 1,4 42 2)=1 12 24 4.1 17 7 S So ou ur rc ce e S SS S d df f M MS S N Nu um mb be er r o of f o ob bs s =4 44 4.r re eg g r r p pNewey-West standard error 121112221221122

    25、2var2cov,var2,where,var,cov,.nn tttttjttjnn ttjjxxttjtjtjtttjxtxux xu uTSSTSSx xxuu uTSSxbrr+_ _c co on ns s 2 29 9.5 57 74 49 97 7 2 2.3 30 02 25 57 79 9 1 12 2.8 84 4 0 0.0 00 00 0 2 24 4.9 92 28 81 18 8 3 34 4.2 22 21 17 76 6 p pr ro od du uc ct t .7 70 00 05 58 89 93 3 .0 02 26 60 07 71 1 2 26 6

    26、.8 87 7 0 0.0 00 00 0 .6 64 47 79 97 76 6 .7 75 53 32 20 02 27 7 r rw wa ag ge es s C Co oe ef f.S St td d.E Er rr r.t t P P|t t|9 95 5%C Co on nf f.I In nt te er rv va al l N Ne ew we ey y-W We es st t P Pr ro ob b F F =0 0.0 00 00 00 0m ma ax xi im mu um m l la ag g:1 1 F F(1 1,4 42 2)=7 72 22 2.1

    27、 13 3R Re eg gr re es ss si io on n w wi it th h N Ne ew we ey y-W We es st t s st ta an nd da ar rd d e er rr ro or rs s N Nu um mb be er r o of f o ob bs s =4 44 4.n ne ew we ey y r rw wa ag ge es s p pr ro od du uc ct t,l la ag g(1 1)Newey-West standard errorlNewey-West standard error corrects se

    28、rial correlation as well as heteroskedasticity.If option lag is set to zero,then NW standard error is equivalent to White robust standard error.lnewey rwages products,lag(0)lreg rwages products,vce(robust)Main Point in this ChapterlSerial correlation:cov(ui,uj)0,i.e.E(ui,uj)0 lConcequence:OLS estima

    29、tors will be still unbiased and consistentOLS estimators will not be efficient and variance of it is biased.t-statistics and F-statistic will be misleadinglTest serial correlationTime-sequence plotDurbin-Watson testlCorrection for serial correlation of AR(1)Generalize differencing.Newey West standard error

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:第10章序列相关性课件.ppt
    链接地址:https://www.163wenku.com/p-3859176.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库