书签 分享 收藏 举报 版权申诉 / 10
上传文档赚钱

类型小学数学解题策略(42)-最值规律.doc

  • 上传人(卖家):实用文档
  • 文档编号:383722
  • 上传时间:2020-03-19
  • 格式:DOC
  • 页数:10
  • 大小:120KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《小学数学解题策略(42)-最值规律.doc》由用户(实用文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    小学 数学 解题 策略 42 规律 下载 _小升初复习资料_小升初专区_数学_小学
    资源描述:

    1、小学数学解题策略(42)最值规律【积最大的规律】(1)多个数的和一定(为一个不变的常数),当这几个数均相等时,它们的积最大。用字母表示,就是如果a1+a2+an=b(b为一常数),那么,当a1=a2=an时,a1a2an有最大值。例如,a1+a2=10,;1+9=1019=9;2+8=1028=16;3+7=1037=21;4+6=1046=24;4.5+5.5=104.55.5=24.75;5+5=1055=25;5.5+4.5=105.54.5=24.75;9+1=1091=9;由上可见,当a1、a2两数的差越小时,它们的积就越大;只有当它们的差为0,即a1=a2时,它们的积就会变得最大。

    2、三个或三个以上的数也是一样的。由于篇幅所限,在此不一一举例。由“积最大规律”,可以推出以下的结论:结论1 所有周长相等的n边形,以正n边形(各角相等,各边也相等的n边形)的面积为最大。例如,当n=4时,周长相等的所有四边形中,以正方形的面积为最大。例题:用长为24厘米的铁丝,围成一个长方形,长宽如何分配时,它的面积为最大?解 设长为a厘米,宽为b厘米,依题意得(a+b)2=24即 a+b=12由积最大规律,得a=b=6(厘米)时,面积最大为66=36(平方厘米)。(注:正方形是特殊的矩形,即特殊的长方形。)结论2 在三度(长、宽、高)的和一定的长方体中,以正方体的体积为最大。例题:用12米长的

    3、铁丝焊接成一个长方体,长、宽、高如何分配,它的体积才会最大?解 设长方体的长为a米,宽为b米,高为c米,依题意得(a+b+c)4=12即a+b+c=3由积最大规律,得a=b=c=1(米)时,长方体体积为最大。最大体积为111=1(立方米)。(2)将给定的自然数N,分拆成若干个(不定)的自然数的和,只有当这些自然数全是2或3,并且2至多为两个时,这些自然数的积最大。例如,将自然数8拆成若干个自然数的和,要使这些自然数的乘积为最大。怎么办呢?我们可将各种拆法详述如下:分拆成8个数,则只能是8个“1”,其积为1。分拆成7个数,则只能是6个“1”,1个“2”,其积为2。分拆成6个数,可得两组数:(1,

    4、1,1,1,1,3);(1,1,1,1,2,2)。它们的积分别是3和4。分拆成5个数,可得三组数:(1,1,1,1,4);(1,1,1,2,3);(1,1,2,2,2)。它们的积分别为4,6,8。分拆成4个数,可得5组数:(1,1,1,5);(1,1,2,4);(1,1,3,3);(1,2,2,3);(2,2,2,2)。它们的积分别为5,8,9,12,16。分拆成3个数,可得5组数:(1,1,6);(1,2,5);(1,3,4);(2,2,4);(2,3,3)。它们的积分别为6,10,12,16,18。分拆成2个数,可得4组数:(1,7);(2,6);(3,5);(4,4)。它们的积分别为7,

    5、12,15,16。分拆成一个数,就是这个8。从上面可以看出,积最大的是18=332。可见,它符合上面所述规律。用同样的方法,将6、7、14、25分拆成若干个自然数的和,可发现6=3+3时,其积33=9为最大;7=3+2+2时,其积322=12为最大;14=3+3+3+3+2时,其积33332=162为最大;由这些例子可知,上面所述的规律是正确的。【和最小的规律】几个数的积一定,当这几个数相等时,它们的和相等。用字母表达,就是如果a1a2an=c(c为常数),那么,当a1=a2=an时,a1+a2+an有最小值。例如,a1a2=9,19=91+9=10;33=93+3=6;由上述各式可见,当两数

    6、差越小时,它们的和也就越小;当两数差为0时,它们的和为最小。例题:用铁丝围成一个面积为16平方分米的长方形,如何下料,材料最省?解 设长方形长为a分米,宽为b分米,依题意得ab=16。要使材料最省,则长方形周长应最小,即a+b要最小。根据“和最小规律”,取a=b=4(分米)时,即用16分米长的铁丝围成一个正方形,所用的材料为最省。推论 由“和最小规律”可以推出:在所有面积相等的封闭图形中,以圆的周长为最小。例如,面积均为4平方分米的正方形和圆,正方形的周长为8分米;而的周长小于正方形的周长。【面积变化规律】在周长一定的正多边形中,边数越多,面积越大。为0.4336=2.598(平方分米)。方形

    7、的面积。推论 由这一面积变化规律,可以推出下面的结论:在周长一定的所有封闭图形中,以圆的面积为最大。例如,周长为4分米的正方形面积为1平方分米;而周长为4分米的圆,于和它周长相等的正方形面积。【体积变化规律】在表面积一定的正多面体(各面为正n边形,各面角和各二面角相等的多面体)中,面数越多,体积越大。例如,表面积为8平方厘米的正四面体SABC(如图1.30),它每一个面均为正三角形,每个三角形面积为2平方厘米,它的体积约是1.1697立方厘米。而表面积为8平方厘米长约为1.1546厘米,体积约为1.539立方厘米。显然,正方体体积大于正四面体体积。推论 由这一体积变化规律,可推出如下结论:在表

    8、面积相等的所有封闭体中,以球的体积为最大。例如,表面积为8平方厘米的正四面体,体积约为1.1697立方米;表面积为8平方厘米的正六面体(正方体),体积约为1.539立方厘米;而表面积是8平方厘米的球,体积却约有2.128立方厘米。可见上面的结论是正确的。【排序不等式】 对于两个有序数组:a1a2an 及b1b2bn,则a1b1+a2b2+anb抇n(同序)Ta1b抇1+a2b抇2+anb抇n(乱序)a1bn+a2bn-1+anb1(倒序)(其中b抇1、b抇2、b抇n为b1、b2、bn的任意一种排列(顺序、倒序排列在外),当且仅当a1=a2=an,或b1=b2=bn时,式中等号成立。)由这一不等

    9、式可知,同序积之和为最大,倒序积之和为最小。例题:设有10个人各拿一只水桶,同时到一个水龙头下接水。水龙头注满第一、第二、九、十个人的桶,分别需要1、2、3、9、10分钟。问:如何安排这10个人的排队顺序,可使每个人所费时间的总和尽可能少?这个总费时至少是多少分钟?解 设每人水桶注满时间的一个有序数组为:1,2,3,9,10。打水时,等候的人数为第二个有序数组,等候时间最长的人数排前,这样组成1,2,3,9,10。根据排序不等式,最小积的和为倒序,即110+29+38+47+56+65+74+83+92+101=(110+29+38+47+56)2=(10+18+24+28+30)2=220(分钟)其排队顺序应为:根据注满一桶水所需时间的多少,按从少到多的排法。10

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:小学数学解题策略(42)-最值规律.doc
    链接地址:https://www.163wenku.com/p-383722.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库