小学数学解题策略(42)-最值规律.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《小学数学解题策略(42)-最值规律.doc》由用户(实用文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 数学 解题 策略 42 规律 下载 _小升初复习资料_小升初专区_数学_小学
- 资源描述:
-
1、小学数学解题策略(42)最值规律【积最大的规律】(1)多个数的和一定(为一个不变的常数),当这几个数均相等时,它们的积最大。用字母表示,就是如果a1+a2+an=b(b为一常数),那么,当a1=a2=an时,a1a2an有最大值。例如,a1+a2=10,;1+9=1019=9;2+8=1028=16;3+7=1037=21;4+6=1046=24;4.5+5.5=104.55.5=24.75;5+5=1055=25;5.5+4.5=105.54.5=24.75;9+1=1091=9;由上可见,当a1、a2两数的差越小时,它们的积就越大;只有当它们的差为0,即a1=a2时,它们的积就会变得最大。
2、三个或三个以上的数也是一样的。由于篇幅所限,在此不一一举例。由“积最大规律”,可以推出以下的结论:结论1 所有周长相等的n边形,以正n边形(各角相等,各边也相等的n边形)的面积为最大。例如,当n=4时,周长相等的所有四边形中,以正方形的面积为最大。例题:用长为24厘米的铁丝,围成一个长方形,长宽如何分配时,它的面积为最大?解 设长为a厘米,宽为b厘米,依题意得(a+b)2=24即 a+b=12由积最大规律,得a=b=6(厘米)时,面积最大为66=36(平方厘米)。(注:正方形是特殊的矩形,即特殊的长方形。)结论2 在三度(长、宽、高)的和一定的长方体中,以正方体的体积为最大。例题:用12米长的
3、铁丝焊接成一个长方体,长、宽、高如何分配,它的体积才会最大?解 设长方体的长为a米,宽为b米,高为c米,依题意得(a+b+c)4=12即a+b+c=3由积最大规律,得a=b=c=1(米)时,长方体体积为最大。最大体积为111=1(立方米)。(2)将给定的自然数N,分拆成若干个(不定)的自然数的和,只有当这些自然数全是2或3,并且2至多为两个时,这些自然数的积最大。例如,将自然数8拆成若干个自然数的和,要使这些自然数的乘积为最大。怎么办呢?我们可将各种拆法详述如下:分拆成8个数,则只能是8个“1”,其积为1。分拆成7个数,则只能是6个“1”,1个“2”,其积为2。分拆成6个数,可得两组数:(1,
4、1,1,1,1,3);(1,1,1,1,2,2)。它们的积分别是3和4。分拆成5个数,可得三组数:(1,1,1,1,4);(1,1,1,2,3);(1,1,2,2,2)。它们的积分别为4,6,8。分拆成4个数,可得5组数:(1,1,1,5);(1,1,2,4);(1,1,3,3);(1,2,2,3);(2,2,2,2)。它们的积分别为5,8,9,12,16。分拆成3个数,可得5组数:(1,1,6);(1,2,5);(1,3,4);(2,2,4);(2,3,3)。它们的积分别为6,10,12,16,18。分拆成2个数,可得4组数:(1,7);(2,6);(3,5);(4,4)。它们的积分别为7,
展开阅读全文