小学数学解题策略(35)-解行程问题的方法.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《小学数学解题策略(35)-解行程问题的方法.doc》由用户(实用文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 数学 解题 策略 35 行程 问题 方法 下载 _小升初复习资料_小升初专区_数学_小学
- 资源描述:
-
1、小学数学解题策略(35)解行程问题的方法第三十五讲 解行程问题的方法已知速度、时间、距离三个数量中的任何两个,求第三个数量的应用题,叫做行程问题。 解答行程问题的关键是,首先要确定运动的方向,然后根据速度、时间和路程的关系进行计算。行程问题的基本数量关系是:速度时间=路程路程速度=时间路程时间=速度行程问题常见的类型是:相遇问题,追及问题(即同向运动问题),相离问题(即相背运动问题)。(一)相遇问题两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。它的特点是两个运动物体共同走完整个路程。小学数学教材中的行程问题,一般是指相遇问题。相遇问题根
2、据数量关系可分成三种类型:求路程,求相遇时间,求速度。它们的基本关系式如下:总路程=(甲速+乙速)相遇时间相遇时间=总路程(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度1.求路程(1)求两地间的距离例1 两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。甲乙两地相距多少千米?(适于五年级程度)解:两辆汽车从同时相对开出到相遇各行4小时。一辆汽车的速度乘以它行驶的时间,就是它行驶的路程;另一辆汽车的速度乘以它行驶的时间,就是这辆汽车行驶的路程。两车行驶路程之和,就是两地距离。564=224(千米)634=252(千米)224+252=
3、476(千米)综合算式:564+634=224+252=476(千米)答略。例2 两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。5小时后,两列火车相距多少千米?(适于五年级程度)解:此题的答案不能直接求出,先求出两车5小时共行多远后,从两地的距离480千米中,减去两车5小时共行的路程,所得就是两车的距离。480-(40+42)5=480-825=480-410=70(千米)答:5小时后两列火车相距70千米。例3 甲、乙二人分别从A、B两地同时相向而行,甲每小时行5千米,乙每小时行4千米。二人第一次相遇后,都继续前进,分别到达B、A两地后又
4、立即按原速度返回。从开始走到第二次相遇,共用了6小时。A、B两地相距多少千米?(适于五年级程度)解:从开始走到第一次相遇,两人走的路程是一个AB之长;而到第二次相遇,两人走的路程总共就是3个AB之长(图35-1),这三个AB之长是: (5+4)6=54(千米)所以,A、B两地相距的路程是:543=18(千米)答略。例4 两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。两车相遇时,第一列火车比第二列火车多行了20千米。求甲、乙两地间的距离。(适于五年级程度)解:两车相遇时,两车的路程差是20千米。出现路程差的原因是两车行驶的速度不同,第一列火车每
5、小时比第二列火车多行(60-55)千米。由此可求出两车相遇的时间,进而求出甲、乙两地间的距离。(60+55)20(60-55)=115205=460(千米)答略。*例5 甲、乙二人同时从A、B两地相向而行,甲每小时走6千米,乙每小时走5千米,两个人在距离中点1.5千米的地方相遇。求A、B两地之间的距离。(适于五年级程度)解:由题意可知,当二人相遇时,甲比乙多走了1.52千米(图35-2),甲比乙每小时多行(6-5)千米。由路程差与速度差,可求出相遇时间,进而求出A、B两地之间的距离。(6+5)1.52(6-5)=111.521=113=33(千米)答略。由两车“在离中点2千米处相遇”可知,甲车
6、比乙车少行:22=4(千米)所以,乙车行的路程是:甲车行的路程是:A、B两站间的距离是:24+20=44(千米)同普通客车相遇。甲、乙两城间相距多少千米?(适于六年级程度)快车从乙城开出,普通客车与快车相对而行。已知普通客车每小时行60千米,快车每小时行80千米,可以求出两车速度之和。又已知两车相遇时间,可以按“速度之和相遇时间”,求出两车相对而行的总行程。普通客车已行驶普通客车与快车速度之和是:60+80=140(千米/小时)两车相对而行的总路程是:1404=560(千米)两车所行的总路程占全程的比率是:甲、乙两城之间相距为:综合算式:答略。2)求各行多少 例1 两地相距37.5千米,甲、乙
7、二人同时从两地出发相向而行,甲每小时走3.5千米,乙每小时走4千米。相遇时甲、乙二人各走了多少千米?(适于五年级程度)解:到甲、乙二人相遇时所用的时间是:37.5(3.5+4)=5(小时)甲行的路程是:3.55=17.5(千米)乙行的路程是:45=20(千米)答略。例2 甲、乙二人从相距40千米的两地同时相对走来,甲每小时走4千米,乙每小时走6千米。相遇后他们又都走了1小时。两人各走了多少千米?(适于五年级程度)解:到甲、乙二人相遇所用的时间是:40(4+6)=4(小时)由于他们又都走了1小时,因此两人都走了:4+1=5(小时)甲走的路程是:45=20(千米)乙走的路程是:65=30(千米)答
8、略。例3 两列火车分别从甲、乙两个火车站相对开出,第一列火车每小时行48.65千米,第二列火车每小时行47.35千米。在相遇时第一列火车比第二列火车多行了5.2千米。到相遇时两列火车各行了多少千米?(适于五年级程度)解:两车同时开出,行的路程有一个差,这个差是由于速度不同而形成的。可以根据“相遇时间=路程差速度差”的关系求出相遇时间,然后再分别求出所行的路程。从出发到相遇所用时间是:5.2(48.65-47.35)=5.21.3=4(小时)第一列火车行驶的路程是:48.654=194.6(千米)第二列火车行驶的路程是:47.354=189.4(千米)答略。*例4 东、西两车站相距564千米,两
9、列火车同时从两站相对开出,经6小时相遇。第一列火车比第二列火车每小时快2千米。相遇时这两列火车各行了多少千米?(适于五年级程度)解:两列火车的速度和是:5646=94(千米/小时)第一列火车每小时行:(94+2)2=48(千米)第二列火车每小时行:48-2=46(千米)相遇时,第一列火车行:486=288(千米)第二列火车行:466=276(千米)答略。2.求相遇时间例1 两个城市之间的路程是500千米,一列客车和一列货车同时从两个城市相对开出,客车的平均速度是每小时55千米,货车的平均速度是每小时45千米。两车开了几小时以后相遇?(适于五年级程度)解:已知两个城市之间的路程是500千米,又知
10、客车和货车的速度,可求出两车的速度之和。用两城之间的路程除以两车的速度之和可以求出两车相遇的时间。500(55+45)=500100=5(小时)答略。例2 两地之间的路程是420千米,一列客车和一列货车同时从两个城市答略。例3 在一次战役中,敌我双方原来相距62.75千米。据侦察员报告,敌人已向我处前进了11千米。我军随即出发迎击,每小时前进6.5千米,敌人每小时前进5千米。我军出发几小时后与敌人相遇?(适于五年级程度)解:此题已给出总距离是62.75千米,由“敌人已向我处前进了11千米”可知实际的总距离减少到(62.75-11)千米。(62.75-11)(6.5+5)=51.7511.5=4
11、.5(小时)答:我军出发4.5小时后与敌人相遇。例4 甲、乙两地相距200千米,一列货车由甲地开往乙地要行驶5小时;一列客车由乙地开往甲地需要行驶4小时。如果两列火车同时从两地相对开出,经过几小时可以相遇?(得数保留一位小数)(适于五年级程度)解:此题用与平常说法不同的方式给出了两车的速度。先分别求出速度再求和,根据“时间=路程速度”的关系,即可求出相遇时间。200(2005+2004)=200(40+50)=200902.2(小时)答:两车大约经过2.2小时相遇。例5 在复线铁路上,快车和慢车分别从两个车站开出,相向而行。快车车身长是180米,速度为每秒钟9米;慢车车身长210米,车速为每秒
展开阅读全文