人教A版新教材必修第一册《3.1.1 函数的概念(二)》教案(定稿).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教A版新教材必修第一册《3.1.1 函数的概念(二)》教案(定稿).docx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 3.1.1 函数的概念二 人教A版新教材必修第一册3.1.1 函数的概念二教案定稿 人教 新教材 必修 一册 3.1 函数 概念 教案 定稿 下载 _必修第一册_人教A版(2019)_数学_高中
- 资源描述:
-
1、3.1.1函数的概念(二)学习目标1.会判断两个函数是否为同一个函数.2.能正确使用区间表示数集.3.会求一些简单函数的定义域与函数值一、区间的概念知识梳理设a,bR,且ab,规定如下:区间数轴表示a,b(a,b)a,b)(a,ba,)(a,)(,b(,b)注意点:(1)区间只能表示连续的数集,开闭不能混淆(2)用数轴表示区间时,要特别注意实心点与空心点的区别(3)区间是实数集的一种表示形式,集合的运算仍然成立(4)是一个符号,而不是一个数例1把下列数集用区间表示:(1)x|x1;(2)x|x0;(3)x|1x1;(4)x|0x1或2x4解(1)x|x11,)(2)x|x0(,0)(3)x|1
2、x1(1,1)(4)x|0x1或2x4(0,1)2,4反思感悟用区间表示数集时要注意:(1)区间左端点值小于右端点值(2)区间两端点之间用“,”隔开(3)含端点值的一端用中括号,不含端点值的一端用小括号(4)以“”“”为区间的一端时,这端必须用小括号跟踪训练1(1)集合x|2x2且x0用区间表示为_答案(2,0)(0,2解析x|2x2且x0(2,0)(0,2(2)已知区间(a2a1,7,则实数a的取值范围是_答案(3,2)解析由题意可知a2a17,即a2a60,解得3a0,即x2,所以函数y的定义域为x|x2且x1(3)要使函数有意义,自变量x的取值必须满足解得x5,且x3,所以函数y的定义域
3、为x|x5且x3(4)要使函数有意义,则即解不等式组得1x1.所以函数y的定义域为x|1x1三、判断是否为同一个函数问题1构成函数的要素有哪些?提示定义域、对应关系和值域问题2结合函数的定义,如何才能确定一个函数?提示有确定的定义域和对应关系,则此时值域唯一确定例3下列各组函数:f(x),g(x)x1;f(x),g(x);f(x),g(x);f(x),g(x)x3;汽车匀速运动时,路程与时间的函数关系f(t)80t(0t5)与一次函数g(x)80x(0x5)其中表示同一个函数的是_(填序号)答案解析不是同一个函数,定义域不同,f(x)的定义域为x|x0,g(x)的定义域为R.不是同一个函数,对
4、应关系不同,f(x),g(x).是同一个函数,定义域、对应关系都相同不是同一个函数,对应关系不同,f(x)|x3|,g(x)x3.是同一个函数,定义域、对应关系都相同反思感悟判断两个函数为同一个函数应注意的三点(1)定义域、对应关系两者中只要有一个不相同就不是同一个函数,即使定义域与值域都相同,也不一定是同一个函数(2)函数是两个数集之间的对应关系,所以用什么字母表示自变量、因变量是没有限制的(3)在化简解析式时,必须是等价变形跟踪训练3下列各组函数中是同一个函数的是()Ayx1与yByx21与st21Cy2x与y2x(x0)Dy(x1)2与yx2答案B解析A,C选项中两函数的定义域不同,D选
5、项中两函数的对应关系不同,故A,C,D错误四、求抽象函数的定义域例4(1)函数yf(x)的定义域是1,3,则f(2x1)的定义域为_答案1,1解析令12x13,解得1x1,所以f(2x1)的定义域为1,1(2)若函数yf(3x1)的定义域为2,4,则yf(x)的定义域是()A1,1 B5,13C5,1 D1,13答案B解析由题意知,2x4,所以53x113,所以yf(x)的定义域是5,13反思感悟抽象函数的定义域(1)已知f(x)的定义域为a,b,求f(g(x)的定义域时,不等式ag(x)b的解集即定义域(2)已知f(g(x)的定义域为c,d,求f(x)的定义域时,求出g(x)在c,d上的范围
6、(值域)即定义域跟踪训练4已知函数f(x1)的定义域为x|2x3,则函数f(2x1)的定义域为()Ax|1x9 Bx|3x7Cx|2x1 D.答案D解析函数yf(x1)的定义域为x|2x3,2x3,则3x12,即函数f(x)的定义域为x|3x2对函数f(2x1),有32x12,解得2x.即函数f(2x1)的定义域为.1知识清单:(1)区间的表示(2)求简单函数的定义域和函数值(3)判断是否为同一个函数(4)求抽象函数的定义域2方法归纳:整体代换3常见误区:不会用整体代换的思想求抽象函数的定义域1已知区间2a1,11,则实数a的取值范围是()A(,6) B(6,)C(1,6) D(1,6)答案A
展开阅读全文