八年级数学下册PPT教学课件《一次函数 课题学习 选择方案》.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《八年级数学下册PPT教学课件《一次函数 课题学习 选择方案》.ppt》由用户(我爱163文库)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一次函数 课题学习 选择方案 八年级数学下册PPT教学课件一次函数 课题学习 选择方案 年级 数学 下册 PPT 教学 课件 一次 函数 课题 学习 选择 方案 下载 _八年级下册_人教版(2024)_数学_初中
- 资源描述:
-
1、19.3 课题学习 选择方案,第十九章 一次函数,导入新课,讲授新课,问题1 怎样选取上网收费方式?,下表给出A,B,C三种上宽带网的收费方式.,1.哪种方式上网费是会变化的?哪种不变? A、B会变化,C不变 2.在A、B两种方式中,上网费由哪些部分组成? 上网费=月使用费+超时费 3.影响超时费的变量是什么? 上网时间 4.这三种方式中有一定最优惠的方式吗? 没有一定最优惠的方式,与上网的时间有关,5.设月上网时间为x,则方式A、B的上网费y1、y2都是x的函数,要比较它们,需在 x 0 时,考虑何时 (1) y1 = y2; (2) y1 y2.,6.在方式A中,超时费一定会产生吗?什么情
2、况下才会有超时费? 不一定,只有在上网时间超过25小时时才会产生,合起来可写为:,当0x25时,y1=30;,当x25时,y1=30+0.0560(x-25)=3x-45.,7.你能自己写出方式B的上网费y2关于上网时间 x之间的函数关系式吗?,方式C的上网费y3关于上网时间x之间的函数关系式呢?,当x0时,y3=120.,7.当上网时_时,选择方式A最省钱.,当上网时间_时,选择方式B最省钱.,当上网时间_时,选择方式C最省钱.,在同一坐标系画出它们的图象:,某移动公司对于移动话费推出两种收费方式: A方案:每月收取基本月租费15元,另收通话费 为0.2元/分; B方案: 零月租费,通话费为
3、0.3元/分. (1)试写出A,B两种方案所付话费y(元)与通话 时间t(分)之间的函数关系式; (2)在同一坐标系画出这两个函数的图象,并指出哪种付费方式合算?,做一做,(2)这两个函数的图象如下:,t(分),y1 = 15+0.2t,y1 = 0.3t,观察图象,可知: 当通话时间为150分时,选择A或B方案费用一样; 当通话时间少于150分时,选择A方案费合算; 当通话时间多于150分时,选择B方案合算.,问题2 怎样租车?,某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师现有甲、乙两种大客车,它们的载客量和租金如表所示:,(1
4、)共需租多少辆汽车? (2)给出最节省费用的租车方案,问题1:租车的方案有哪几种?,共三种:(1)单独租甲种车;(2)单独租乙种车; (3)甲种车和乙种车都租,某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师现有甲、乙两种大客车,它们的载客量和租金如表所示:,问题2:如果单独租甲种车需要多少辆?乙种车呢? 问题3:如果甲、乙都租,你能确定合租车辆的范围吗?,汽车总数不能小于6辆,不能超过8辆.,单独租甲种车要6辆,单独租乙种车要8辆.,问题4:要使6名教师至少在每辆车上有一名,你能确定排除哪种方案?你能确定租车的辆数吗?,说明了车辆总
5、数不会超过6辆,可以排除方案(2)单独租乙种车;所以租车的辆数只能为6辆,问题5:在问题3中,合租甲、乙两种车的时候,又有很多种情况,面对这样的问题,我们怎样处理呢?,方法1:分类讨论分3种情况; 方法2:设租甲种车x辆,确定x的范围.,(1)为使240名师生有车坐,可以确定x的一个范围吗?,(2)为使租车费用不超过2300元,又可以确定x的范围吗?,结合问题的实际意义,你能有几种不同的租车方案?为节省费用应选择其中的哪种方案?,x 辆,(6-x)辆,设租用 x 辆甲种客车,则租车费用y(单位:元)是 x 的函数,即,怎样确定 x 的取值范围呢?,x 辆,(6-x)辆,除了分别计算两种方案的租
6、金外,还有其他选择方案的方法吗?,由函数可知 y 随 x 增大而增大,所以 x = 4时 y 最小.,解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型.,总结归纳,例 某工程机械厂根据市场要求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产这两种型号的挖掘机,所生产的这两种型号的挖掘机可全部售出,此两种型号挖掘机的生产成本和售价如下表所示:,(1)该厂对这两种型号挖掘机有几种生产方案
展开阅读全文