微积分基本定理(22)课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《微积分基本定理(22)课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分 基本 定理 22 课件
- 资源描述:
-
1、1.6微积分基本定理2022-10-131【课标要求】1了解微积分基本定理的内容与含义2会利用微积分基本定理求函数的定积分【核心扫描】1用微积分基本定理求函数的定积分是本课的重点2对微积分基本定理的考查常以选择、填空题的形式出现2022-10-132自学导引1微积分基本定理连续 f(x)F(b)F(a)F(b)F(a)2022-10-133想一想:导数与定积分有怎样的联系?提示导数与定积分都是定积分学中两个最基本、最重要的概念,运用它们之间的联系,我们可以找出求定积分的方法,求导数与定积分是互为逆运算2022-10-1342定积分和曲边梯形面积的关系设曲边梯形在x轴上方的面积为S上,x轴下方的
2、面积为S下,则(1)当曲边梯形的面积在x轴上方时,如图(1),则图(1)图(2)2022-10-135图(3)S下 S上S下 0 2022-10-136想一想:在上面图(1)、图(2)、图(3)中的三个图形阴影部分的面积分别怎样表示?提示根据定积分与曲边梯形的面积的关系知:2022-10-137名师点睛1微积分基本定理的理解(1)微积分基本定理揭示了导数与定积分之间的联系,同时它也提供了计算定积分的一种有效方法(2)根据定积分的定义求定积分往往比较困难,而利用微积分基本定理求定积分比较方便2022-10-138(3)设f(x)是定义在区间I上的一个函数,如果存在函数F(x),在区间I上的任意一
3、点x处都有F(x)f(x),那么F(x)叫做函数f(x)在区间I上的一个原函数根据定义,求函数f(x)的原函数,就是要求一个函数F(x),使它的导数F(x)等于f(x)由于F(x)cF(x)f(x),所以F(x)c也是f(x)的原函数,其中c为常数(4)利用微积分基本定理求定积分 的关键是找出满足F(x)f(x)的函数F(x),通常,我们可以运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出F(x)2022-10-1392被积函数为分段函数或绝对值函数时的正确处理方式分段函数和绝对值函数积分时要分段去积和去掉绝对值符号去积处理这类积分一定要弄清分段临界点,同时对于定积分的性质,必须熟
展开阅读全文