书签 分享 收藏 举报 版权申诉 / 13
上传文档赚钱

类型2017年普通高等学校招生全国统一考试理科数学(全国卷)1.docx

  • 上传人(卖家):四川天地人教育
  • 文档编号:3762541
  • 上传时间:2022-10-10
  • 格式:DOCX
  • 页数:13
  • 大小:277.93KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2017年普通高等学校招生全国统一考试理科数学(全国卷)1.docx》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2017 普通高等学校 招生 全国 统一 考试 理科 数学 全国卷 下载 _历年真题_高考专区_数学_高中
    资源描述:

    1、绝密 启用前2017年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(2017全国1,理1)已知集合A=x|x1,B=x|3x1,则()A.AB=x|x1D.AB=解析3x1=30,x0,B=x|x0,AB=x|x0,

    2、AB=x|x1 000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A1 000和n=n+1B.A1 000和n=n+2C.A1 000和n=n+1D.A1 000和n=n+2解析因为要求A大于1 000时输出,且程序框图中在“否”时输出,所以“”中不能填入A1 000,排除A,B.又要求n为偶数,且n初始值为0,所以“”中n依次加2可保证其为偶数,故选D.答案D9.(2017全国1,理9)已知曲线C1:y=cos x,C2:y=sin(2x+23),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移6个单位长度,得到曲线C2B.把C1

    3、上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12个单位长度,得到曲线C2解析曲线C1的方程可化为y=cos x=sinx+2,把曲线C1上各点的横坐标缩短到原来的12倍,纵坐标不变,得曲线y=sin2x+2=sin 2x+4,为得到曲线C2:y=sin 2x+3,需再把得到的曲线向左平移12个单位长度.答案D10.(2017全国1,理10)已知F为抛物线C:y2=4

    4、x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为()A.16B.14C.12D.10解析方法一:由题意,易知直线l1,l2斜率不存在时,不合题意.设直线l1方程为y=k1(x-1),联立抛物线方程,得y2=4x,y=k1(x-1),消去y,得k12x2-2k12x-4x+k12=0,所以x1+x2=2k12+4k12.同理,直线l2与抛物线的交点满足x3+x4=2k22+4k22.由抛物线定义可知|AB|+|DE|=x1+x2+x3+x4+2p=2k12+4k12+2k22+4k22+4=4k12+4k22+8

    5、216k12k22+8=16,当且仅当k1=-k2=1(或-1)时,取得等号.方法二:如图所示,由题意可得F(1,0),设AB倾斜角为不妨令0,2.作AK1垂直准线,AK2垂直x轴,结合图形,根据抛物线的定义,可得|AF|cos+|GF|=|AK1|,|AK1|=|AF|,|GF|=2,所以|AF|cos +2=|AF|,即|AF|=21-cos.同理可得|BF|=21+cos,所以|AB|=41-cos2=4sin2.又DE与AB垂直,即DE的倾斜角为2+,则|DE|=4sin22+=4cos2,所以|AB|+|DE|=4sin2+4cos2=4sin2cos2=414sin22=16sin

    6、2216,当=4时取等号,即|AB|+|DE|最小值为16,故选A.答案A11.(2017全国1,理11)设x,y,z为正数,且2x=3y=5z,则()A.2x3y5zB.5z2x3yC.3y5z2xD.3y2x1,可得2x3y;再由2x5z=2ln55ln2=ln25ln321,可得2x5z;所以3y2x100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110解析设数列的首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推,设第n组的项数为n,则前n组的项数和为n(1+n)2.第n组的和为1-2n1-2=2n-1,前n组总共的和为2

    7、(1-2n)1-2-n=2n+1-2-n.由题意,N100,令n(1+n)2100,得n14且nN*,即N出现在第13组之后.若要使最小整数N满足:N100且前N项和为2的整数幂,则SN-Sn(1+n)2应与-2-n互为相反数,即2k-1=2+n(kN*,n14),所以k=log2(n+3),解得n=29,k=5.所以N=29(1+29)2+5=440,故选A.答案A二、填空题:本题共4小题,每小题5分,共20分。13.(2017全国1,理13)已知向量a,b的夹角为60,|a|=2,|b|=1,则|a+2b|=.解析因为|a+2b|2=(a+2b)2=|a|2+4|a|b|cos 60+4|

    8、b|2=22+42112+41=12,所以|a+2b|=12=23.答案2314.(2017全国1,理14)设x,y满足约束条件x+2y1,2x+y-1,x-y0,则z=3x-2y的最小值为.解析不等式组x+2y1,2x+y-1,x-y0表示的平面区域如图所示.由z=3x-2y,得y=32x-z2.求z的最小值,即求直线y=32x-z2的纵截距的最大值.数形结合知当直线y=32x-z2过图中点A时,纵截距最大.由2x+y=-1,x+2y=1,解得A点坐标为(-1,1),此时z取得最小值为3(-1)-21=-5.答案-515.(2017全国1,理15)已知双曲线C:x2a2-y2b2=1(a0,

    9、b0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M,N两点.若MAN=60,则C的离心率为.解析如图所示,由题意可得|OA|=a,|AN|=|AM|=b,MAN=60,|AP|=32b,|OP|=|OA|2-|PA|2=a2-34b2.设双曲线C的一条渐近线y=bax的倾斜角为,则tan =|AP|OP|=32ba2-34b2.又tan =ba,32ba2-34b2=ba,解得a2=3b2,e=1+b2a2=1+13=233.答案23316.(2017全国1,理16)如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上

    10、的点,DBC,ECA,FAB分别是以BC,CA,AB为底边的等腰三角形,沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC,ECA,FAB,使得D,E,F重合,得到三棱锥.当ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.解析如图所示,连接OD,交BC于点G.由题意知ODBC,OG=36BC.设OG=x,则BC=23x,DG=5-x,三棱锥的高h=DG2-OG2=25-10x+x2-x2=25-10x.因为SABC=1223x3x=33x2,所以三棱锥的体积V=13SABCh=3x225-10x=325x4-10x5.令f(x)=25x4-10x5,x0,52,则f(x)=10

    11、0x3-50x4.令f(x)=0,可得x=2,则f(x)在(0,2)单调递增,在2,52单调递减,所以f(x)max=f(2)=80.所以V380=415,所以三棱锥体积的最大值为415.答案415三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(2017全国1,理17)(12分)ABC的内角A,B,C的对边分别为a,b,c.已知ABC的面积为a23sinA.(1)求sin Bsin C;(2)若6cos Bcos C=1,a=3,求ABC的周长.解(1)由题设得

    12、12acsin B=a23sinA,即12csin B=a3sinA.由正弦定理得12sin Csin B=sinA3sinA.故sin Bsin C=23.(2)由题设及(1)得cos Bcos C-sin Bsin C=-12,即cos(B+C)=-12.所以B+C=23,故A=3.由题设得12bcsin A=a23sinA,即bc=8.由余弦定理得b2+c2-bc=9,即(b+c)2-3bc=9,得b+c=33.故ABC的周长为3+33.18.(2017全国1,理18)(12分)如图,在四棱锥P-ABCD中,ABCD,且BAP=CDP=90.(1)证明:平面PAB平面PAD;(2)若PA

    13、=PD=AB=DC,APD=90,求二面角A-PB-C的余弦值.解(1)由已知BAP=CDP=90,得ABAP,CDPD.由于ABCD,故ABPD,从而AB平面PAD.又AB平面PAB,所以平面PAB平面PAD.(2)在平面PAD内作PFAD,垂足为F.由(1)可知,AB平面PAD,故ABPF,可得PF平面ABCD.以F为坐标原点,FA的方向为x轴正方向,|AB|为单位长,建立如图所示的空间直角坐标系F-xyz.由(1)及已知可得A22,0,0,P0,0,22,B22,1,0,C-22,1,0.所以PC=-22,1,-22,CB=(2,0,0),PA=22,0,-22,AB=(0,1,0).设

    14、n=(x,y,z)是平面PCB的法向量,则nPC=0,nCB=0,即-22x+y-22z=0,2x=0.可取n=(0,-1,-2).设m=(x,y,z)是平面PAB的法向量,则mPA=0,mAB=0,即22x-22z=0,y=0.可取m=(1,0,1).则cos=nm|n|m|=-33.所以二面角A-PB-C的余弦值为-33.19.(2017全国1,理19)(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(,2).(1)假设生产状态正常,记X表示一

    15、天内抽取的16个零件中其尺寸在(-3,+3)之外的零件数,求P(X1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(-3,+3)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.()试说明上述监控生产过程方法的合理性;()下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得x=116i=116xi=9.97,s=116i=116(xi-x)2=116(i=116xi2-16x2)0.212,其中x

    16、i为抽取的第i个零件的尺寸,i=1,2,16.用样本平均数x作为的估计值,用样本标准差s作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(-3,+3)之外的数据,用剩下的数据估计和(精确到0.01).附:若随机变量Z服从正态分布N(,2),则P(-3Zb0),四点P1(1,1),P2(0,1),P3(-1,32),P4(1,32)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.解(1)由于P3,P4两点关于y轴对称,故由题设知C经过P3,P4两点.又由1a2+1b21a2+34b

    17、2知,C不经过点P1,所以点P2在C上.因此1b2=1,1a2+34b2=1,解得a2=4,b2=1.故C的方程为x24+y2=1.(2)设直线P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知t0,且|t|0.设A(x1,y1),B(x2,y2),则x1+x2=-8km4k2+1,x1x2=4m2-44k2+1.而k1+k2=y1-1x1+y2-1x2=kx1+m-1x1+kx2+m-1x2=2kx1x2+(m-1)(x1+x2)x1x2.由题设k1+k2=-1,故(2k+1)x1x2+(m-1)(x1+x2)=0.即(2k+1)4m2-44k2+1+(m-1

    18、)-8km4k2+1=0.解得k=-m+12.当且仅当m-1时,0,于是l:y=-m+12x+m,即y+1=-m+12(x-2),所以l过定点(2,-1).21.(2017全国1,理21)(12分)已知函数f(x)=ae2x+(a-2)ex-x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.解(1)f(x)的定义域为(-,+),f(x)=2ae2x+(a-2)ex-1=(aex-1)(2ex+1).()若a0,则f(x)0,则由f(x)=0得x=-ln a.当x(-,-ln a)时,f(x)0,所以f(x)在(-,-ln a)单调递减,在(-ln a,+)单调递增.(

    19、2)()若a0,由(1)知,f(x)至多有一个零点.()若a0,由(1)知,当x=-ln a时,f(x)取得最小值,最小值为f(-ln a)=1-1a+ln a.当a=1时,由于f(-ln a)=0,故f(x)只有一个零点;当a(1,+)时,由于1-1a+ln a0,即f(-ln a)0,故f(x)没有零点;当a(0,1)时,1-1a+ln a0,即f(-ln a)-2e-2+20,故f(x)在(-,-ln a)有一个零点.设正整数n0满足n0ln3a-1,则f(n0)=en0(aen0+a-2)-n0en0-n02n0-n00.由于ln3a-1-ln a,因此f(x)在(-ln a,+)有一

    20、个零点.综上,a的取值范围为(0,1).(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.(2017全国1,理22)选修44:坐标系与参数方程(10分)在直角坐标系xOy中,曲线C的参数方程为x=3cos,y=sin,(为参数),直线l的参数方程为x=a+4t,y=1-t,(t为参数).(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为17,求a.解(1)曲线C的普通方程为x29+y2=1.当a=-1时,直线l的普通方程为x+4y-3=0.由x+4y-3=0,x29+y2=1,解得x=3,y=0或x=-2125,y=242

    21、5.从而C与l的交点坐标为(3,0),-2125,2425.(2)直线l的普通方程为x+4y-a-4=0,故C上的点(3cos ,sin )到l的距离为d=|3cos+4sin-a-4|17.当a-4时,d的最大值为a+917.由题设得a+917=17,所以a=8;当a-4时,d的最大值为-a+117.由题设得-a+117=17,所以a=-16.综上,a=8或a=-16.23.(2017全国1,理23)选修45:不等式选讲(10分)已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.(1)当a=1时,求不等式f(x)g(x)的解集;(2)若不等式f(x)g(x)的解集包含-1,1,求a的取值范围.解(1)当a=1时,不等式f(x)g(x)等价于x2-x+|x+1|+|x-1|-40.当x1时,式化为x2+x-40,从而1x-1+172.所以f(x)g(x)的解集为x-1x-1+172.(2)当x-1,1时,g(x)=2.所以f(x)g(x)的解集包含-1,1,等价于当x-1,1时f(x)2.又f(x)在-1,1的最小值必为f(-1)与f(1)之一,所以f(-1)2且f(1)2,得-1a1.所以a的取值范围为-1,1.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2017年普通高等学校招生全国统一考试理科数学(全国卷)1.docx
    链接地址:https://www.163wenku.com/p-3762541.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库