2017年普通高等学校招生全国统一考试理科数学(全国卷)2.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2017年普通高等学校招生全国统一考试理科数学(全国卷)2.docx》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 普通高等学校 招生 全国 统一 考试 理科 数学 全国卷 下载 _历年真题_高考专区_数学_高中
- 资源描述:
-
1、绝密 启用前2017年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(2017全国2,理1)3+i1+i=()A.1+2iB.1-2iC.2+iD.2-i解析3+i1+i=(3+i)(1-i)(1+i)(1-i)=4-
2、2i2=2-i,故选D.答案D2.(2017全国2,理2)设集合A=1,2,4,B=x|x2-4x+m=0.若AB=1,则B=()A.1,-3B.1,0C.1,3D.1,5解析由AB=1,可知1B,所以m=3,即B=1,3,故选C.答案C3.(2017全国2,理3)我国古代数学名著算法统宗中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏解析设塔的顶层共有x盏灯,则各层的灯数构成一个公比为2的等比数列,由x(1-27)1-2=381
3、,可得x=3,故选B.答案B4.(2017全国2,理4)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90B.63C.42D.36解析由题意,可知该几何体由两部分组成,这两部分分别是高为6的圆柱截去一半后的图形和高为4的圆柱,且这两个圆柱的底面圆半径都为3,故其体积为V=12326+324=63,故选B.答案B5.(2017全国2,理5)设x,y满足约束条件2x+3y-30,2x-3y+30,y+30,则z=2x+y的最小值是()A.-15B.-9C.1D.9解析画出不等式组所表示的平面区域如图所示,结合目
4、标函数z=2x+y的几何意义可得z在点B(-6,-3)处取得最小值,即zmin=-12-3=-15,故选A.答案A6.(2017全国2,理6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种解析先把4项工作分成3份有C42C21C11A22种情况,再把3名志愿者排列有A33种情况,故不同的安排方式共有C42C21C11A22A33=36种,故选D.答案D7.(2017全国2,理7)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩
5、,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩解析因为甲不知道自己的成绩,所以乙、丙的成绩是一位优秀一位良好.又因为乙知道丙的成绩,所以乙知道自己的成绩.又因为乙、丙的成绩是一位优秀一位良好,所以甲、丁的成绩也是一位优秀一位良好.又因为丁知道甲的成绩,所以丁也知道自己的成绩,故选D.答案D8.(2017全国2,理8)执行右面的程序框图,如果输入的a=-1,则输出的S=()A.2B.3C.4D.5解析程序框图运行如下:a=-1,S=0,K=1,进入循环,S=0+(
6、-1)1=-1,a=1,K=2;S=-1+12=1,a=-1,K=3;S=1+(-1)3=-2,a=1,K=4;S=-2+14=2,a=-1,K=5;S=2+(-1)5=-3,a=1,K=6;S=-3+16=3,a=-1,K=7,此时退出循环,输出S=3.故选B.答案B9.(2017全国2,理9)若双曲线C:x2a2-y2b2=1(a0,b0)的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则C的离心率为()A.2B.3C.2D.233解析可知双曲线C的渐近线方程为bxay=0,取其中的一条渐近线方程为bx+ay=0,则圆心(2,0)到这条渐近线的距离为2ba2+b2=22-12=3,
7、即2bc=3,所以c=2a,所以e=2,故选A.答案A10.(2017全国2,理10)已知直三棱柱ABC-A1B1C1中,ABC=120,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.32B.155C.105D.33解析方法一:如图,取AB,BB1,B1C1的中点M,N,P,连结MN,NP,PM,可知AB1与BC1所成的角等于MN与NP所成的角.由题意可知BC1=2,AB1=5,则MN=12AB1=52,NP=12BC1=22.取BC的中点Q,连结PQ,QM,则可知PQM为直角三角形.在ABC中,AC2=AB2+BC2-2ABBCcosABC=4+1-221-12
8、=7,即AC=7.又CC1=1,所以PQ=1,MQ=12AC=72.在MQP中,可知MP=MQ2+PQ2=112.在PMN中,cosPNM=MN2+NP2-PM22MNNP=522+222-112225222=-105,又异面直线所成角的范围为0,2,故所求角的余弦值为105.方法二:把三棱柱ABC-A1B1C1补成四棱柱ABCD-A1B1C1D1,如图,连结C1D,BD,则AB1与BC1所成的角为BC1D.由题意可知BC1=2,BD=22+12-221cos60=3,C1D=AB1=5.可知BC12+BD2=C1D2,所以cosBC1D=25=105,故选C.答案C11.(2017全国2,理
9、11)若x=-2是函数f(x)=(x2+ax-1)ex-1的极值点,则f(x)的极小值为()A.-1B.-2e-3C.5e-3D.1解析由题意可得,f(x)=(2x+a)ex-1+(x2+ax-1)ex-1=x2+(a+2)x+a-1ex-1.因为x=-2是函数f(x)的极值点,所以f(-2)=0.所以a=-1.所以f(x)=(x2-x-1)ex-1.所以f(x)=(x2+x-2)ex-1.令f(x)=0,解得x1=-2,x2=1.当x变化时,f(x),f(x)的变化情况如下表:x(-,-2)-2(-2,1)1(1,+)f(x)+0-0+f(x)极大值极小值所以当x=1时,f(x)有极小值,并
10、且极小值为f(1)=(1-1-1)e1-1=-1,故选A.答案A12.(2017全国2,理12)已知ABC是边长为2的等边三角形,P为平面ABC内一点,则PA(PB+PC)的最小值是()A.-2B.-32C.-43D.-1解析以BC所在的直线为x轴,BC的垂直平分线AD为y轴,D为坐标原点建立平面直角坐标系,如图.可知A(0,3),B(-1,0),C(1,0).设P(x,y),则PA=(-x,3-y),PB=(-1-x,-y),PC=(1-x,-y).所以PB+PC=(-2x,-2y).所以PA(PB+PC)=2x2-2y(3-y)=2x2+2y-322-32-32.当点P的坐标为0,32时,
11、PA(PB+PC)取得最小值为-32,故选B.答案B二、填空题:本题共4小题,每小题5分,共20分。13.(2017全国2,理13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次.X表示抽到的二等品件数,则DX=.解析由题意可知抽到二等品的件数X服从二项分布,即XB(100,0.02),其中p=0.02,n=100,则DX=np(1-p)=1000.020.98=1.96.答案1.9614.(2017全国2,理14)函数f(x)=sin2x+3cos x-34(x0,2)的最大值是.解析由题意可知f(x)=1-cos2x+3cos x-34=-cos2x+3co
展开阅读全文