书签 分享 收藏 举报 版权申诉 / 13
上传文档赚钱

类型2017年普通高等学校招生全国统一考试数学(江苏卷).docx

  • 上传人(卖家):四川天地人教育
  • 文档编号:3762476
  • 上传时间:2022-10-10
  • 格式:DOCX
  • 页数:13
  • 大小:297.93KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2017年普通高等学校招生全国统一考试数学(江苏卷).docx》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2017 普通高等学校 招生 全国 统一 考试 数学 江苏 下载 _历年真题_高考专区_数学_高中
    资源描述:

    1、2017年普通高等学校招生全国统一考试(江苏卷)1.(2017江苏,1)已知集合A=1,2,B=a,a2+3.若AB=1,则实数a的值为.解析由已知得1B,2B,显然a2+33,所以a=1,此时a2+3=4,满足题意,故答案为1.答案12.(2017江苏,2)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.解析由已知得z=(1+i)(1+2i)=-1+3i,故|z|=(-1)2+32=10,答案为10.答案103.(2017江苏,3)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽

    2、取60件进行检验,则应从丙种型号的产品中抽取件.解析抽取比例为601 000=350,故应从丙种型号的产品中抽取300350=18(件),答案为18.答案184.(2017江苏,4)下图是一个算法流程图.若输入x的值为116,则输出y的值是.解析由题意得y=2+log2116=2-4=-2,答案为-2.答案-25.(2017江苏,5)若tan-4=16,则tan =.解析方法一:tan =tan-4+4=tan-4+tan41-tan-4tan4=16+11-161=75.方法二:因为tan-4=tan-tan41+tantan4=tan-11+tan=16,所以tan =75,答案为75.答

    3、案756.(2017江苏,6)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O1O2的体积为V1,球O的体积为V2,则V1V2的值是.解析设球O的半径为r,则圆柱O1O2的高为2r,故V1V2=r22r43r3=32,答案为32.答案327.(2017江苏,7)记函数f(x)=6+x-x2的定义域为D.在区间-4,5上随机取一个数x,则xD的概率是.解析由6+x-x20,即x2-x-60得-2x3,所以D=-2,3-4,5,由几何概型的概率公式得xD的概率P=3-(-2)5-(-4)=59,答案为59.答案598.(2017江苏,8)在平面直角坐标系xOy中,双曲

    4、线x23-y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.解析该双曲线的右准线方程为x=310=31010,两条渐近线方程为y=33x,得P31010,3010,Q31010,-3010,又c=10,所以F1(-10,0),F2(10,0),四边形F1PF2Q的面积S=2103010=23.答案239.(2017江苏,9)等比数列an的各项均为实数,其前n项和为Sn.已知S3=74,S6=634,则a8=.解析设该等比数列的公比为q,则S6-S3=634-74=14,即a4+a5+a6=14.S3=74,a1+a2+a3=74.由得(a1+a

    5、2+a3)q3=14,q3=1474=8,即q=2.a1+2a1+4a1=74,a1=14,a8=a1q7=1427=32.答案3210.(2017江苏,10)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是.解析一年的总运费与总存储费用之和为4x+600x6=4x+900x42900=240,当且仅当x=900x,即x=30时等号成立.答案3011.(2017江苏,11)已知函数f(x)=x3-2x+ex-1ex,其中e是自然对数的底数.若f(a-1)+f(2a2)0,则实数a的取值范围是.解析因为f

    6、(-x)=(-x)3-2(-x)+e-x-1e-x=-f(x),所以f(x)为奇函数.因为f(x)=3x2-2+ex+e-x3x2-2+2exe-x0(当且仅当x=0时等号成立),所以f(x)在R上单调递增,因为f(a-1)+f(2a2)0可化为f(2a2)-f(a-1),即f(2a2)f(1-a),所以2a21-a,2a2+a-10,解得-1a12,故实数a的取值范围是-1,12.答案-1,1212.(2017江苏,12)如图,在同一个平面内,向量OA,OB,OC的模分别为1,1,2,OA与OC的夹角为,且tan =7,OB与OC的夹角为45.若OC=mOA+nOB(m,nR),则m+n=.

    7、解析|OA|=|OB|=1,|OC|=2,由tan =7,0,得00,cos 0,tan =sincos,sin =7cos ,又sin2+cos2=1,得sin =7210,cos =210,OCOA=15,OCOB=1,OAOB=cos+4=-35,得方程组m-35n=15,-35m+n=1,解得m=54,n=74,所以m+n=3.答案313.(2017江苏,13)在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上.若PAPB20,则点P的横坐标的取值范围是.解析设P(x,y),由PAPB20,易得x2+y2+12x-6y20.把x2+y2=50代入x

    8、2+y2+12x-6y20得2x-y+50.由2x-y+5=0,x2+y2=50,可得x=-5,y=-5或x=1,y=7.由2x-y+50表示的平面区域及P点在圆上,可得点P在圆弧EPF上,所以点P横坐标的取值范围为-52,1.答案-52,114.(2017江苏,14)设f(x)是定义在R上且周期为1的函数,在区间0,1)上,f(x)=x2,xD,x,xD,其中集合D=xx=n-1n,nN*,则方程f(x)-lg x=0的解的个数是.答案815.(2017江苏,15)如图,在三棱锥A-BCD中,ABAD,BCBD,平面ABD平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EFA

    9、D.求证:(1)EF平面ABC;(2)ADAC.证明(1)在平面ABD内,因为ABAD,EFAD,所以EFAB.又因为EF平面ABC,AB平面ABC,所以EF平面ABC.(2)因为平面ABD平面BCD,平面ABD平面BCD=BD,BC平面BCD,BCBD,所以BC平面ABD.因为AD平面ABD,所以BCAD.又ABAD,BCAB=B,AB平面ABC,BC平面ABC,所以AD平面ABC.又因为AC平面ABC,所以ADAC.16.(2017江苏,16)已知向量a=(cos x,sin x),b=(3,-3),x0,.(1)若ab,求x的值;(2)记f(x)=ab,求f(x)的最大值和最小值以及对应

    10、的x的值.解(1)因为a=(cos x,sin x),b=(3,-3),ab,所以-3cos x=3sin x.若cos x=0,则sin x=0,与sin2x+cos2x=1矛盾,故cos x0.于是tan x=-33.又x0,所以x=56.(2)f(x)=ab=(cos x,sin x)(3,-3)=3cos x-3sin x=23cosx+6.因为x0,所以x+66,76,从而-1cosx+632.于是,当x+6=6,即x=0时,f(x)取到最大值3;当x+6=,即x=56时,f(x)取到最小值-23.17.(2017江苏,17)如图,在平面直角坐标系xOy中,椭圆E:x2a2+y2b2

    11、=1(ab0)的左、右焦点分别为F1,F2,离心率为12,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.解(1)设椭圆的半焦距为c.因为椭圆E的离心率为12,两准线之间的距离为8,所以ca=12,2a2c=8,解得a=2,c=1,于是b=a2-c2=3,因此椭圆E的标准方程是x24+y23=1.(2)由(1)知,F1(-1,0),F2(1,0).设P(x0,y0),因为P为第一象限的点,故x00,y00.当x0=1时,l2与l1相交于F1,与

    12、题设不符.当x01时,直线PF1的斜率为y0x0+1,直线PF2的斜率为y0x0-1.因为l1PF1,l2PF2,所以直线l1的斜率为-x0+1y0,直线l2的斜率为-x0-1y0,从而直线l1的方程:y=-x0+1y0(x+1),直线l2的方程:y=-x0-1y0(x-1).由,解得x=-x0,y=x02-1y0,所以Q-x0,x02-1y0.因为点Q在椭圆上,由对称性,得x02-1y0=y0,即x02-y02=1或x02+y02=1.又P在椭圆E上,故x024+y023=1.由x02-y02=1,x024+y023=1,解得x0=477,y0=377;x02+y02=1,x024+y023

    13、=1,无解.因此点P的坐标为477,377.18.(2017江苏,18)如图,水平放置的正四棱柱形玻璃容器和正四棱台形玻璃容器的高均为32 cm,容器的底面对角线AC的长为107 cm,容器的两底面对角线EG,E1G1的长分别为14 cm和62 cm.分别在容器和容器中注入水,水深均为12 cm.现有一根玻璃棒l,其长度为40 cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.容器容器解(1)由正棱柱的定义,CC1平面ABCD

    14、,所以平面A1ACC1平面ABCD,CC1AC.记玻璃棒的另一端落在CC1上点M处.因为AC=107,AM=40,所以MC=402-(107)2=30,从而sinMAC=34.记AM与水面的交点为P1,过P1作P1Q1AC,Q1为垂足,则P1Q1平面ABCD,故P1Q1=12,从而AP1=P1Q1sinMAC=16.答:玻璃棒l没入水中部分的长度为16 cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为24 cm)(2)如图,O,O1是正棱台的两底面中心.由正棱台的定义,OO1平面EFGH,所以平面E1EGG1平面EFGH,O1OEG.同理,平面E1EGG1平面E1F1G1H1,O

    15、1OE1G1.记玻璃棒的另一端落在GG1上点N处.过G作GKE1G1,K为垂足,则GK=OO1=32.因为EG=14,E1G1=62,所以KG1=62-142=24,从而GG1=KG12+GK2=242+322=40.设EGG1=,ENG=,则sin =sin2+KGG1=cosKGG1=45.因为2,所以cos =-35.在ENG中,由正弦定理可得40sin=14sin,解得sin =725.因为0k)总成立,则称数列an是“P(k)数列”.(1)证明:等差数列an是“P(3)数列”;(2)若数列an既是“P(2)数列”,又是“P(3)数列”,证明:an是等差数列.证明(1)因为an是等差数

    16、列,设其公差为d,则an=a1+(n-1)d,从而,当n4时,an-k+an+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n-1)d=2an,k=1,2,3,所以an-3+an-2+an-1+an+1+an+2+an+3=6an,因此等差数列an是“P(3)数列”.(2)数列an既是“P(2)数列”,又是“P(3)数列”,因此,当n3时,an-2+an-1+an+1+an+2=4an,当n4时,an-3+an-2+an-1+an+1+an+2+an+3=6an.由知,an-3+an-2=4an-1-(an+an+1),an+2+an+3=4an+1-(an-1+an).将代

    17、入,得an-1+an+1=2an,其中n4,所以a3,a4,a5,是等差数列,设其公差为d.在中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d,在中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d,所以数列an是等差数列.20.(2017江苏,20)已知函数f(x)=x3+ax2+bx+1(a0,bR)有极值,且导函数f(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b23a;(3)若f(x),f(x)这两个函数的所有极值之和不小于-72,求a的取值范围.解(1)由f(x)=x

    18、3+ax2+bx+1,得f(x)=3x2+2ax+b=3x+a32+b-a23.当x=-a3时,f(x)有极小值b-a23.因为f(x)的极值点是f(x)的零点,所以f-a3=-a327+a39-ab3+1=0,又a0,故b=2a29+3a.因为f(x)有极值,故f(x)=0有实根,从而b-a23=19a(27-a3)0,即a3.当a=3时,f(x)0(x-1),故f(x)在R上是增函数,f(x)没有极值;当a3时,f(x)=0有两个相异的实根x1=-a-a2-3b3,x2=-a+a2-3b3.列表如下:x(-,x1)x1(x1,x2)x2(x2,+)f(x)+0-0+f(x)极大值极小值故f

    19、(x)的极值点是x1,x2.从而a3.因此b=2a29+3a,定义域为(3,+).(2)由(1)知,ba=2aa9+3aa.设g(t)=2t9+3t,则g(t)=29-3t2=2t2-279t2.当t362,+时,g(t)0,从而g(t)在362,+上单调递增.因为a3,所以aa33,故g(aa)g(33)=3,即ba3.因此b23a.(3)由(1)知,f(x)的极值点是x1,x2,且x1+x2=-23a,x12+x22=4a2-6b9.从而f(x1)+f(x2)=x13+ax12+bx1+1+x23+ax22+bx2+1=x13(3x12+2ax1+b)+x23(3x22+2ax2+b)+1

    20、3a(x12+x22)+23b(x1+x2)+2=4a3-6ab27-4ab9+2=0.记f(x),f(x)所有极值之和为h(a),因为f(x)的极值为b-a23=-19a2+3a,所以h(a)=-19a2+3a,a3.因为h(a)=-29a-3a20,于是h(a)在(3,+)上单调递减.因为h(6)=-72,于是h(a)h(6),故a6.因此a的取值范围为(3,6.21.(2017江苏,21)A.选修41:几何证明选讲如图,AB为半圆O的直径,直线PC切半圆O于点C,APPC,P为垂足.求证:(1)PAC=CAB;(2)AC2=APAB.证明(1)因为PC切半圆O于点C,所以PCA=CBA.

    21、因为AB为半圆O的直径,所以ACB=90.因为APPC,所以APC=90.因此PAC=CAB.(2)由(1)知,APCACB,故APAC=ACAB,即AC2=APAB.B.选修42:矩阵与变换已知矩阵A=0110,B=1002.(1)求AB;(2)若曲线C1:x28+y22=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.解(1)因为A=0110,B=1002,所以AB=01101002=0210.(2)设Q(x0,y0)为曲线C1上的任意一点,它在矩阵AB对应的变换作用下变为P(x,y),则0210x0y0=xy,即2y0=x,x0=y,所以x0=y,y0=x2.因为点Q(x0,

    22、y0)在曲线C1上,则x028+y022=1,从而y28+x28=1,即x2+y2=8.因此曲线C1在矩阵AB对应的变换作用下得到曲线C2:x2+y2=8.C.选修44:坐标系与参数方程在平面直角坐标系xOy中,已知直线l的参数方程为x=-8+t,y=t2(t为参数),曲线C的参数方程为x=2s2,y=22s(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.解直线l的普通方程为x-2y+8=0.因为点P在曲线C上,设P(2s2,22s),从而点P到直线l的距离d=|2s2-42s+8|12+(-2)2=2(s-2)2+45.当s=2时,dmin=455.因此当点P的坐标为(4,

    23、4)时,曲线C上点P到直线l的距离取到最小值455.D.选修45:不等式选讲已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明:ac+bd8.证明由柯西不等式可得:(ac+bd)2(a2+b2)(c2+d2).因为a2+b2=4,c2+d2=16,所以(ac+bd)264,因此ac+bd8.22.(2017江苏,22)如图,在平行六面体ABCD-A1B1C1D1中,AA1平面ABCD,且AB=AD=2,AA1=3,BAD=120.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B -A1D -A的正弦值.解在平面ABCD内,过点A作AEAD,交BC于点E.因为AA1

    24、平面ABCD,所以AA1AE,AA1AD.如图,以AE,AD,AA1为正交基底,建立空间直角坐标系A-xyz.因为AB=AD=2,AA1=3,BAD=120,则A(0,0,0),B(3,-1,0),D(0,2,0),E(3,0,0),A1(0,0,3),C1(3,1,3).(1)A1B=(3,-1,-3),AC1=(3,1,3),则cos=A1BAC1|A1B|AC1|=(3,-1,-3)(3,1,3)7=-17,因此异面直线A1B与AC1所成角的余弦值为17.(2)平面A1DA的一个法向量为AE=(3,0,0).设m=(x,y,z)为平面BA1D的一个法向量,又A1B=(3,-1,-3),B

    25、D=(-3,3,0).则mA1B=0,mBD=0,即3x-y-3z=0,-3x+3y=0.不妨取x=3,则y=3,z=2,所以m=(3,3,2)为平面BA1D的一个法向量,从而cos=AEm|AE|m|=(3,0,0)(3,3,2)34=34.设二面角B-A1D-A的大小为,则|cos |=34.因为0,所以sin =1-cos2=74.因此二面角B-A1D-A的正弦值为74.23.(2017江苏,23)已知一个口袋中有m个白球,n个黑球(m,nN*,n2),这些球除颜色外完全相同.现将口袋中的球随机地逐个取出,并放入如图所示的编号为1,2,3,m+n的抽屉内,其中第k次取出的球放入编号为k的

    26、抽屉(k=1,2,3,m+n).123m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量X表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明:E(X)n(m+n)(n-1).解(1)编号为2的抽屉内放的是黑球的概率p为:p=Cm+n-1n-1Cm+nn=nm+n.(2)随机变量X的概率分布为:X1n1n+11n+21k1m+nPCn-1n-1Cm+nnCnn-1Cm+nnCn+1n-1Cm+nnCk-1n-1Cm+nnCn+m-1n-1Cm+nn随机变量X的期望为:E(X)=k=nm+n1kCk-1n-1Cm+nn=1Cm+nnk=nm+n1k(k-1)!(n-1)!(k-n)!.所以E(X)1Cm+nnk=nm+n(k-2)!(n-1)!(k-n)!=1(n-1)Cm+nnk=nm+n(k-2)!(n-2)!(k-n)!=1(n-1)Cm+nn(1+Cn-1n-2+Cnn-2+Cm+n-2n-2)=1(n-1)Cm+nn(Cn-1n-1+Cn-1n-2+Cnn-2+Cm+n-2n-2)=1(n-1)Cm+nn(Cnn-1+Cnn-2+Cm+n-2n-2)=1(n-1)Cm+nn(Cm+n-2n-1+Cm+n-2n-2)=Cm+n-1n-1(n-1)Cm+nn=n(m+n)(n-1),即E(X)n(m+n)(n-1).

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2017年普通高等学校招生全国统一考试数学(江苏卷).docx
    链接地址:https://www.163wenku.com/p-3762476.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库