2020年普通高等学校招生全国统一考试数学(山东卷)教师.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020年普通高等学校招生全国统一考试数学(山东卷)教师.docx》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 普通高等学校 招生 全国 统一 考试 数学 山东 教师 下载 _历年真题_高考专区_数学_高中
- 资源描述:
-
1、2020年普通高等学校招生全国统一考试数学(山东卷)(本试卷共4页,22小题,满分150分,考试用时120分钟)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A=x|1x3,B=x|2x4,则AB=()A.x|2x3B.x|2x3C.x|1x4D.x|1x4答案C解析(数形结合)由数轴可知所以AB=x|1x4,故选C.2.2-i1+2i=()A.1B.-1C.iD.-i答案D解析2-i1+2i=(2-i)(1-2i)(1+2i)(1-2i)=2-i-4i-21+4=-5i5=-i,故选D.【解题技巧】 复数除法的实质是分母实数化,
2、运算后只需将i2换成-1即可,对于复数的运算问题,要注意掌握运算法则和有关概念.3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种答案C解析甲场馆安排1名有C61种方法,乙场馆安排2名有C52种方法,丙场馆安排3名有C33种方法,所以共有C61C52C33=60种方法,故选C.4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A
3、且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40,则晷针与点A处的水平面所成的角为()A.20B.40C.50D.90答案B解析由题意知,如图,圆O为赤道所在的大圆.圆O1是在点A处与赤道所在平面平行的晷面.O1C为晷针所在的直线.直线OA在圆O所在平面的射影为直线OB,点B在圆O上,则AOB=40,COA=50.又CAO=90,OCA=40.晷针与点A处的水平面所成角为40,故选B.5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是
4、()A.62%B.56%C.46%D.42%答案C解析设既喜欢足球又喜欢游泳的学生比例数为x.由维恩图可知,82%-x+60%=96%,解得x=46%,故选C.6.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=er t描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 20.69)()A
5、.1.2天B.1.8天C.2.5天D.3.5天答案B解析由R0=3.28,T=6,R0=1+rT得3.28=1+6r,r=2.286=0.38,e0.38t=2,即0.38t=ln 2,0.38t0.69,t0.690.381.8(天),故选B.【知识拓展】 解决与实际问题有关的数学问题,特别需要注意的是提炼题意,并对数学知识加以应用.7.已知P是边长为2的正六边形ABCDEF内的一点,则APAB的取值范围是()A.(-2,6)B.(-6,2)C.(-2,4)D.(-4,6)答案A解析如图,以AB所在的直线为x轴,AE所在的直线为y轴建立平面直角坐标系,易知A(0,0),B(2,0),F(-1
6、,3),C(3,3).设P(x,y),则AP=(x,y),AB=(2,0),APAB=2x+0y=2x.-1xn0,则C是椭圆,其焦点在y轴上B.若m=n0,则C是圆,其半径为nC.若mn0,则C是两条直线答案ACD解析mx2+ny2=1,x21m+y21n=1.mn0,1n1m0,C是焦点在y轴上的椭圆,A正确;m=n0,x2+y2=1n,即C是圆,r=nn,B错误;由mx2+ny2=1,得x21m+y21n=1,mn0时,有ny2=1,得y2=1n,即y=nn,表示两条直线,D正确,故选ACD.10.右图是函数y=sin(x+)的部分图像,则sin(x+)=()A.sinx+3B.sin3
7、-2xC.cos2x+6D.cos56-2x答案BC解析由题图可知,T2=23-6=2,T=,2=,=2,A错误;y=sin(2x+).又过点23,0,sin223+=0,即43+=2,=23.y=sin2x+23=sin-2x+23=sin3-2x,故B正确;y=sin3-2x=sin2-6+2x=cos2x+6,C正确;cos56-2x=cos-2x+6=-cos2x+6,D错误,故选BC.11.已知a0,b0,且a+b=1,则()A.a2+b212B.2a-b12C.log2a+log2b-2D.a+b2答案ABD解析a+b=1,(a+b)2=1=a2+b2+2ab2(a2+b2),a2
8、+b212,故A正确;a+b=1,a0,b0,a+1=2a+bb,a-b-1,2a-b2-1=12,故B正确;a+b=12ab,ab14,log2a+log2b=log2ablog214=-2,故C错误;a+b=12ab,2ab1,(a+b)2=a+b+2ab2,a+b2,故D正确,故选ABD.12.信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为1,2,n,且P(X=i)=pi0(i=1,2,n),i=1npi=1,定义X的信息熵H(X)=-i=1npilog2pi.()A.若n=1,则H(X)=0B.若n=2,则H(X)随着p1的增大而增大C.若pi=1n(i=1,2,n),则
9、H(X)随着n的增大而增大D.若n=2m,随机变量Y所有可能的取值为1,2,m,且P(Y=j)=pj+p2m+1-j(j=1,2,m),则H(X)H(Y)答案AC解析若n=1,则p1=1,H(X)=-p1log2p1=-log21=0,A正确;若n=2,令p1=13,p2=23或p1=23,p2=13,均有H(X)=-13log213+23log223,B错误;H(X)=-i=1n1nlog21n=-1nlog21n+1nlog21nn个=-n1nlog21n=-log21n=log2n,H(X)随n的增大而增大,C正确;H(X)=-i=12mpilog2pi=-i=1m(pilog2pi+p
10、2m+1-ilog2p2m+1-i),H(Y)=-i=1m(pi+p2m+1-i)log2(pi+p2m+1-i).因为(pi+p2m+1-i)log2(pi+p2m+1-i)=pilog2(pi+p2m+1-i)+p2m+1-ilog2(pi+p2m+1-i)pilog2pi+p2m+1-ilog2p2m+1-i,所以H(X)H(Y),故D错误.三、填空题:本题共4小题,每小题5分,共20分.13.斜率为3的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则|AB|=.答案163解析如图所示,直线与抛物线交于A,B两点,设A(x1,y1),B(x2,y2),F(1,0),准线方程为x
11、=-1,作AA,BB垂直于准线,交准线于点A,B,由抛物线的定义知|AA|=|AF|,|BB|=|BF|.|AB|=|AF|+|BF|=|AA|+|BB|=x1+p2+x2+p2=x1+x2+p.由y=3(x-1),y2=4x,得3x2-10x+3=0,x1+x2=103,|AB|=103+2=163.14.将数列2n-1与3n-2的公共项从小到大排列得到数列an,则an的前n项和为.答案3n2-2n解析数列2n-1的项均为奇数,数列3n-2的所有奇数项均为奇数,所有偶数项均为偶数.并且显然3n-2中的所有奇数均能在2n-1中找到,所以2n-1与3n-2的所有公共项就是3n-2的所有奇数项,这
展开阅读全文