第八章 第5节 垂直关系.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第八章 第5节 垂直关系.pptx》由用户(LY520)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第八章 第5节 垂直关系 第八 垂直 关系 下载 _三轮冲刺_高考专区_数学_高中
- 资源描述:
-
1、第5节 垂直关系,最新考纲 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.,知 识 梳 理,1.直线与平面垂直 (1)直线和平面垂直的定义 如果一条直线和一个平面内的_一条直线都垂直,那么称这条直线和这个平面垂直.,任何,(2)判定定理与性质定理,la,lb,a,b,a,b,两条相交直线,平行,2.直线和平面所成的角,(1)定义:一条斜线和它在平面上的_所成的_叫作这条直线和这个平面所成的角,一条直线垂直于平面,则它们所成的角是_ ;一条直线和平面平行或在平面内,则它们所成的角是0
2、的角.,(2)范围:_.,射影,锐角,直角,3.二面角 (1)定义:从一条直线出发的_所组成的图形叫作二面角; (2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作_的两条射线,这两条射线所成的角叫作二面角的平面角. (3)二面角的范围:0,. 4.平面与平面垂直 (1)平面与平面垂直的定义 两个平面相交,如果它们所成的二面角是_,就说这两个平面互相垂直.,两个半平面,垂直于棱,直二面角,(2)判定定理与性质定理,垂线,l,l,交线,a,la,l,微点提醒,1.两个重要结论 (1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面. (2)若一条直线垂直于一个平面,则
3、它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法). 2.使用线面垂直的定义和线面垂直的判定定理,不要误解为“如果一条直线垂直于平面内的无数条直线,就垂直于这个平面”.,基 础 自 测,1.判断下列结论正误(在括号内打“”或“”),(1)直线l与平面内的无数条直线都垂直,则l.( ) (2)垂直于同一个平面的两平面平行.( ) (3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.( ) (4)若平面内的一条直线垂直于平面内的无数条直线,则.( ),解析 (1)直线l与平面内的无数条直线都垂直,则有l或l与斜交或l或l,故(1)错误. (2)垂直于同一个平面的两个平面
4、平行或相交,故(2)错误. (3)若两个平面垂直,则其中一个平面内的直线可能垂直于另一平面,也可能与另一平面平行,也可能与另一平面相交,也可能在另一平面内,故(3)错误. (4)若平面内的一条直线垂直于平面内的所有直线,则,故(4)错误. 答案 (1) (2) (3) (4),2.(必修2P40例3改编)已知直线a,b和平面,且ab,a,则b与的位置关系为( ) A.b B.b C.b或b D.b与相交 答案 C,3.(必修2P42A5改编)已知P为ABC所在平面外一点,且PA,PB,PC两两垂直,有下列结论:PABC;PBAC;PCAB;ABBC.其中正确的是( ) A. B. C. D.,
5、解析 如图,因为PAPB,PAPC,PBPCP,且PB平面PBC,PC平面PBC,所以PA平面PBC.又BC平面PBC,所以PABC,同理可得PBAC,PCAB,故正确. 答案 A,4.(2019安徽江南十校联考)已知m和n是两条不同的直线,和是两个不重合的平面,下面给出的条件中一定能推出m的是( ) A.且m B.mn且n C.mn且n D.mn且 解析 由线线平行性质的传递性和线面垂直的判定定理,可知C正确. 答案 C,5.(2017全国卷)在正方体ABCDA1B1C1D1中,E为棱CD的中点,则( ) A.A1EDC1 B.A1EBD C.A1EBC1 D.A1EAC,解析 如图,由题设
6、知,A1B1平面BCC1B1且BC1平面BCC1B1,从而A1B1BC1.,又B1CBC1,且A1B1B1CB1,所以BC1平面A1B1CD, 又A1E平面A1B1CD,所以A1EBC1. 答案 C,6.(2018安阳二模)已知a,b表示两条不同的直线,表示两个不同的平面,下列说法错误的是( ) A.若a,b,则ab B.若a,b,ab,则 C.若a,ab,则b D.若a,ab,则b或b 解析 对于A,若a,则a,又b,故ab,故A正确; 对于B,若a,ab,则b或b,存在直线m,使得mb, 又b,m,.故B正确; 对于C,若a,ab,则b 或b,又,所以b或b,故C错误; 对于D,若a,ab
7、,则b或b,故D正确. 答案 C,考点一 线面垂直的判定与性质,(1)证明:PO平面ABC; (2)若点M在棱BC上,且MC2MB,求点C到平面POM的距离.,(1)证明 因为APCPAC4,O为AC的中点,,由OP2OB2PB2知,OPOB. 由OPOB,OPAC且OBACO,知PO平面ABC.,(2)解 作CHOM,垂足为H.,又由(1)可得OPCH,所以CH平面POM. 故CH的长为点C到平面POM的距离.,规律方法 1.证明直线和平面垂直的常用方法有: (1)判定定理;(2)垂直于平面的传递性(ab,ab);(3)面面平行的性质(a,a);(4)面面垂直的性质(,a,la,ll). 2
8、.证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.,【训练1】 (2019南宁二中、柳州高中联考)如图,三棱柱ABCA1B1C1中,已知AB侧面BB1C1C,ABBC1,BB12,BCC160.,(1)求证:BC1平面ABC;,(1)证明 AB平面BB1C1C,BC1平面BB1C1C,ABBC1, 在CBC1中,BC1,CC1BB12,BCC160,,又AB,BC平面ABC,BCABB,BC1平面ABC.,考点二 面面垂直的判定与性质 【例2】 如图,在四棱锥PABCD中,ABCD,ABAD,CD2AB,平面PA
9、D底面ABCD,PAAD,E和F分别是CD和PC的中点,求证:,(1)PA底面ABCD; (2)BE平面PAD; (3)平面BEF平面PCD.,证明 (1)平面PAD底面ABCD, 且PA垂直于这两个平面的交线AD,PA平面PAD, PA底面ABCD. (2)ABCD,CD2AB,E为CD的中点, ABDE,且ABDE. 四边形ABED为平行四边形. BEAD. 又BE平面PAD,AD平面PAD, BE平面PAD.,(3)ABAD,而且ABED为平行四边形. BECD,ADCD, 由(1)知PA底面ABCD,CD 平面ABCD, PACD,且PAADA,PA,AD平面PAD, CD平面PAD,
展开阅读全文